
An Efficient Method to Intrusion Detection

Yacine Bouzida and Sylvain Gombault
Email :{Yacine.Bouzida | Sylvain.Gombault}@enst-bretagne.fr

Département RSM
GET/ ENST Bretagne

2 rue de la Châtaigneraie
CS 17607

35576 CESSON SEVIGNE CEDEX

ABSTRACT. This paper presents a new method in intrusion detection based on analyzing the audit
trails of users’ activities in a local area network. This approach consists of detecting the presence
of known attacks in servers’ audit sessions. Each attack scenario is described by a column vector
containing the different occurrences of the system events that represent the attack. The detection
procedure consists of examining the manifestation of the attack scenarios in the system event trace.
This method could be applied to attacks on servers. The most advantages of the presented method
are (1) it is easy to implement in any network having the audit mechanism, (2) it is very fast and
may be used in real time and (3) it is robust.

KEYWORDS Intrusion Detection, Audit Trail, Anomaly Intrusion Detection, Misuse Intrusion Detection.

1 Introduction

Computers and network computers of today’s organizations and academia are increasingly becoming
the targets of computer crimes which can result in loss of productivity, competitive advantage and
theft of corporate business information or of research data.

The security infrastructure provides several security services such as privacy, integrity, availability
and authentication. There are many kinds of computer security applications such as: access control,
system restoration, intrusion detection… The first ensures that the user is the one he claims to be and
that he is a registered person. It mainly deals with cryptography and access control. The second
consists of restoring the system to a working state after damages (physical or logical) have occurred.
Both fields have been largely studied and have machine implementation on almost all operating
systems.

Research on intrusion detection started in early 1980’s [1-2]. There have been many intrusion
detection systems developed since [3-4]. Any security policy violation is a potential intrusion
objective [5]. Detecting intrusions can be divided into two categories : anomaly intrusion detection
and misuse intrusion detection.

The former refers to intrusions that can be detected via anomalous behavior and use of computer
resources. For example, if user X only uses the computer from her/his office between 9 AM and 5 PM,
an activity on her/his account late in the night is therefore suspicious and might be an intrusion.
Anomaly detection attempts to quantify the usual and acceptable behavior and flags other irregular
behavior as potentially intrusive.

In contrast, misuse intrusion detection refers to intrusions that follow well defined attack patterns that
exploit weaknesses in system and application software. Such patterns can be precisely written in
advance. Therefore, from this prior knowledge about bad or unacceptable behavior, this technique
seeks to detect it directly, as opposed to anomaly intrusion detection, which seeks to detect the
complement of normal behavior.

Our work lies in misuse detection approach. In particular, it consists of counting the number of events’
occurrences in the audit logs. Each attack scenario is described by the number of occurrences of

auditable events that constitute this attack. The proposed algorithm works as follows; Audit the
client’s activity during her/his connection, if the number of events audited during a client session is
greater than that constituting an attack scenario, then this attack is considered as present. Hence, the
execution time of the matching algorithm is not considerable when it is compared with other misuse
detection systems (see for instance, section 2).

This paper is organized as follows. Section two presents the major approaches of intrusion detection.
In the third section, we present our formalization of the problem. Section four presents some results of
our model. Section five introduces a comparative study with related work in misuse detection, and
finally, section 6 concludes the paper and presents some perspectives.

2 Main approaches to misuse detection

As presented in the previous section, misuse detection consists of collecting and storing known attacks
in an attack database. This attack base will be used by the IDS to find patterns that correspond to the
description of an attack stored in the attack base.

Many mechanisms have been proposed during the past decade to represent an attack scenario; rules in
expert systems such as P-BEST [6], transitions in transition based IDS such as IDIOT [7] which used
CPN (Colored Petri Nets) and state transition diagrams in USTAT [8], and simple signature that are
used recently by the current commercial and open source IDS such as SNORT [9]. Other Mechanisms
are also proposed and are using regular expressions in [10], linear time temporal logic in LogWeaver
[11] and the declarative signature specification language (see for instance Sutekh [12]).

The above approaches take into account temporal constraints between events that should be respected
when writing signatures. On one hand, these constraints refine the description of attacks, on the other
hand, they increase the complexity of the detection algorithm.

Most recent mechanisms are based on finding events that are left by known attacks in audit files.
These events describe attack scenarios and are stocked in the attack base to be used later during the
detection step. However, a bad description of attacks with these events leads to high rates of false
positives if this description is not precise enough and high false negatives if there are lot of attacks that
are not taken into account and not stored in the attack base.

3 Presentation of our model

In our system, each attack scenario is described by the number of occurrences of system events that
constitute this attack. For example, a penetration scenario, that can be used to illegally acquire root
privileges for 4.2 BSD UNIX, is described as follows:

%cp /bin/sh /usr/spool/mail/root
%chmod 4755 /usr/spool/mail/root
%touch x
%mail root <x
% /usr/spool/mail/root
root #

These commands are then translated into audit events which describe the attack.

The different parameters of our formalization are as follows:

• Let Ne be the number of auditable system events and Ns the number of potential known attack
scenarios.

• Let AES be an Ne x Ns Attack Events Scenario sparse matrix which gives the set of events
generated by each attack scenario. AESij is the number of auditable events of type i generated
by the attack scenario j (AESij ≥

•

0). (see fig.1 for an example of such a matrix). AESi is the ith
column vector of AES that represents the ith attack scenario.

Let Ob be an Ne-dimensional vector where Obi counts the number of events of type i that are
present in the audit trail (Ob is called "observed audit vector").

Let I be an Ns-dimensional positive integer vector, where Ii is the number of occurrences of the ith
attack scenario (I describes all the attacks that are present in the audited file).
To capture the manifestation of one or more attacks contained in the audit trail (i.e. Ob), we have to

find the I vector which maximizes the sum ∑ (it is the pessimistic approach: find I that maximizes

the risk); subject to the constraints I
=

Ns

i
iI

1

ixAESi ≤ Ob; (1 ≤ i ≤ Ns) (see eq.1).







≤× =

=
∑

Nsi
i

i

Ns

i
i

ObAESI

IMax

,..,1

1
)(

)(
 (1)

Where AESi is the ith column of AES, which represents the ith attack scenario of the sparse matrix AES.
I is an Ns-dimensional positive integer vector.
It is clear that the system (1) is a polynomial problem (not NP-Complete) and its resolution is very
simple:

0,..,1, ≠=



=

=
ji

ji

j
1,..,Neji AESwhereNsi

AES
ObminI (2)

Here is a simple example of our model:

Example :
















=



















=

4
9
5
8

10

0002
8012
0421
0263
0005

ObandAESlet

The solution to this problem is














=

1
1
1
2

maxI

The different steps to find are described in eq.2. For our example :
),,,,min(5154143132121111 AESObAESObAESObAESObAESObI ÷÷÷÷÷=

 2)24,29,15,38,510min(=÷÷÷÷÷=
{ }0),,min(52124243232222 ==÷÷÷= AESAESAESObAESObAESObI

 1)19,25,68min(=÷÷÷=

and so on, we finally find 












=

1
1
1
2

maxI

 Attack scenario 4 Attack scenario 3Attack scenario 2Attack scenario 1

4

2

3

4

3

2

5

4

3

2

1

8

4

2

1

2

6

2

2

1

3

5

line number

number of events

Figure. 1.: Attack Events Scenario sparse matrix AES Corresponding to the example above.

This approach is similar to those based on thresholds but in our case we can specify the number of
many events occurrences. The signatures are not precise but the detection algorithm used is very
efficient, not NP-Complete (polynomial) and may be used in real time.

4 Results with our model

To perform realistic experiments, we have used the same kinds of users and the same attack-events
matrix (see table.1) as those experimented in [13-14].

An example of an attack type [13-14], which allows the attacker to print any file, is given by the
following commands :

>touch f
>lpr –s f
>rm f
>ln –s/etc/security/passwd f
These commands are then translated into audit events which appear in the AES matrix.

Attack Scenario

a2 l1 l2 l3 l4 a3 a4 a5 l5 l6 l7 l8 a6 a7 a8 a9 l9 l10 l11 a10 l12 l13 l14 l15

user_login fail 3 .

user log (23h to 6h) 1

short_Session . . . 1 .

use_SU OK . 3 .

user_SU fail . . 3 .

who,w,finger,… . 3 8

more,pg,cat,… 5 1 . 5 . .

ls OK 30

ls fail 5

df,hostname,uname 3

arp,netstat,ping 2

ypcat 3

lpr 10 1

rm, mv 1

ln 1

whoami, id . 4

rexec,rlogin,rsh 1

proc_Execute . 3 . . . 35 5 . 8 3 2 3 . . 10 3 . 300 . 2 . 5 . 4

proc_setpetri 100

file_open fail 5

file_open fail cp 10

file_open .netrc 1

file_read lpr 10

file_read passwd... 5 . .

file_write
passwd,… fail

. 1 .

file_write cp Ok 30

file_Unlink rm 50

file_mode . 3 . . .

Table. 1. : The attack-Events matrix used to validate the experiments (from [13]).

For example, attack a2 corresponds to a guessing attack password "there are more than three failed
login attempts during a session", and attack a9 permits any user print any file on which he has no
privileges [13]. All other attacks are defined in [13].

However, we have implemented a sparse matrix to represent this attack events matrix and tested our
model on some simulated users’ behavior after introducing some known attacks in the audited user’s
behavior. The tool used in [13-14] is called GASSATA "Genetic Algorithms for a Simplified Security
Audit Trail Analysis" and its formalization is as follows:
























































≤





























































=































iiij

Nai

i

Nai

i

O

Ne

j

Na

iHAE

Ne

j

maximumHR

1111
1

1

(3)

Where Na is the number of the known attack types, Ne is the number of auditable events, H is an Na-
dimensional hypothesis binary vector, where Hi=1 if the attack i is present according to the hypothesis
and Hi=0 otherwise (H describes a particular attack subset), R is an Na-dimensional weight vector,
where Ri (Ri>0) is the weight associated with attack i (Ri is proportional to the risk inherent in the
attack scenario i). However, the same weight for all attacks (i.e. Ri=1, for i=1,..,Na) is used, AE is an
Ne x Na Attacks-Events matrix (eq.3) which gives the set of events generated by each attack. AEij is
the number of audit events of type i generated by the attack scenario j (AEij ≥ 0) and O has the same
role as Ob in our model which represents the number of occurrences of each event in the audited
session. (For more details see [13-14]).

However, the problem presented in eq.3 is NP-Complete and [13] used an heuristic method based on
genetic algorithms [15-16] to solve this problem.

Some shortcomings of this method, which do not appear in our model, are:

- by using a binary coding for the individuals, it cannot detect the multiple realization of a particular
attack,

- if the same event or group of events occur(s) in several attack scenarios, a malicious intruder
realizing these attacks simultaneously without duplicating this event or group of events, it fails to find
the actual attacks,

- by using Genetic Algorithms, if there is more than one optimum solution, it provides randomly one
of them, and

- if an intruder knows the period of a session, he can perform an attack during two or more different
sessions, it will also fail to detect this attack. ([13] proposed to execute GASSATA whenever possible
(every 18 seconds for example) by considering the whole audit trail from the beginning of the user’s
session).

To illustrate the first three drawbacks, let us apply the algorithm to the above example, the optimum H
vector will be one of the following:














=

0
1
0
1

maxH , , or . 












=

1
0
1
0

maxH 












=

1
1
0
0

maxH

In addition to these three drawbacks, if the number of attack scenarios is great enough, the execution
time using Genetic Algorithms will be considerable and the solution given to the fourth disadvantage
will not be realistic. The following figure shows the execution time in seconds versus number of
attacks in the Attack-Events matrix: a) when using an heuristic method (from [13]). b) when using
our model.

0
100
200
300
400
500
600
700

24 40 70 15
0

40
0

30
00

70
00

15
00

0
attacks number

ex
ec

ut
io

n
tim

e
in

 s
ec

.
a)GASSATA
b)Our Model

Figure. 2.: Execution time with GASSATA and our new model.

This comparison is not performed on a real network with real users. It is only a simulation of some
users’ behavior after introducing some known attacks in the audited user’s behavior. The
experimentation showed that our model finds the solutions in real time, presents less false negatives
and finds exactly all the attacks that are added in the audit trails.

5 Conclusion

We have presented a new method in intrusion detection which consists of analyzing the audit trail by
detecting the existence of well known attacks with a simple comparison of the occurrences number of
auditable events that constitute these attacks. Our simulation results are more interesting than those
obtained when using an heuristic method. We are currently implementing this new method in a real
local area network with real conditions and real users.

Unlike the different models, cited in section 2, that take into account the order and temporal
constraints of the different audited events, our model does not take into account these constraints. Of
course, this does not refine the description of attack scenarios but the detection algorithm is efficient
and fast enough to be used in real time and might be used to detect attacks combined by more than one
user. On the other hand, we are seeking for the possibility to add negative conditions that might be
used to verify whether an attack is not realized when some events occur and then lessen the false
positive rate.

6 References

1. J. P. Anderson. Computer Security Threat Monitoring and Surveillance. Technical report, James. P. Anderson Co., Fort
Washington, Pennsylvania, April 1980.
2. D. Denning: An Intrusion Detection Model, IEEE Transactions on Software Engineering, Vol. 13 (2), 1987, pp. 222,232.
3. S. Axelsson: Research in Intrusion Detection Systems : A Survey; Technical Report N°98-17, Department of Computer
Engineering, Chalmers University of Technology, Gotberg Sweden, December 15th 1998, Revised on August 19th 1999.
4. H. Débar, M. Dacier, A. Wespi: Towards a taxonomy of intrusion detection systems, Computer Networks 31(8) 805-822,
N .H Elsevier, 1999.
5. F. Cuppens et al. Recognizing Malicious Intention in an Intrusion Detection Process. Second International Conference on
Hybrid Intelligent Systems, Santiago, Chili, December 2002.
6. Ulf Lindqvist, Phillip A. Porras. Detecting Computer and Network Misuse Through the Production-Based Expert System
Toolset (P-BEST). In Proceedings of the 1999 IEEE Symposium on Security & Privacy, pages 146-161, Oakland, California,
May 9-12, 1999. IEEE Computer Society Press.
7. S. Kumar, E. Spafford: A pattern matching model for misuse intrusion detection, Proc. 17th National Computer security
Conf. October 1994, pp. 11-21.
8. K. Ilgun: Ustat, a real time intrusion detection system for UNIX, Proc. IEEE Symp. On Research on Security and Privacy,
Oakland, CA, May 1993, pp. 16-28.
9. M. Roesch: Snort Lightwight intrusion detection for networks, Proceedings of LISA '99: 13th Systems Administration
Conference. Seattle, Washington, USA, November 7–12, 1999.

http://www.itd.nrl.navy.mil/ITD/5540/ieee/SP99-Program.html

10. P. Uppuluri and R. Sekar: Experiences with Specification Based Intrusion Detection System. RAID 2001 (Recent
Advances in Intrusion Detection). Springer-Verlag, Lecture Notes in Computer Science 2212.

11. M. Roger and J. Goubault-Larrecq. Log auditing through model checking. In Proc. 14th IEEE Computer Security
Foundations Workshop (CSFW'01), Cape Breton, Nova Scotia, Canada, June 2001, pages 220-236. IEEE Comp. Soc. Press,
2001.
12. J.-P. Pouzol and M.Ducassé: From declarative signatures to misuse IDS. RAID 2001 (Recent Advances in Intrusion
Detection). Springer-Verlag, Lecture Notes in Computer Science 2212.
13. L. Mé: Audit de Sécurité par Algorithmes Génétique, University of Rennes 1, PhD Thesis, Order N° 1069, July 7th 1994.
14. L. Mé: Gassata, a genetic algorithm as an alternative tool for security audit trail analysis, presented at RAID, the first
international workshop on Recent Advances in Intrusion Detection, October 1998.
15. D. E. Goldberg: Genetic Algorithms in Research, Optimization and Machine Learning, Addison Wesley USA, 15767,
1991.
16. M. Gen, R. W. Cheng: Genetic Algorithms and engineering design, John Wiley and Sons, Inc., 1997.

	5 Conclusion

