
EIGENCONNECTIONS
TO INTRUSION DETECTION

Yacine Bouzida and Sylvain Gombault
D«epartement RSM GET/ ENST Bretagne
2, rue de la Châtaigneraie, CS 17607
35576 Cesson S«evign«e CEDEX, FRANCE�

Yacine.Bouzida,Sylvain.Gombault � @enst-bretagne.fr

Abstract Most current intrusion detection systems are signature based ones or machine
learning based methods. Despite the number of machine learning algorithms
applied to KDD 99 cup, none of them have introduced a pre-model to reduce
the huge information quantity present in the different KDD 99 datasets. We
introduce a method that applies to the different datasets before performing any of
the different machine learning algorithms applied to KDD 99 intrusion detection
cup. This method enables us to significantly reduce the information quantity
in the different datasets without loss of information. Our method is based on
Principal Component Analysis (PCA). It works by projecting data elements onto
a feature space, which is actually a vector space ��� , that spans the significant
variations among known data elements. We present two well known algorithms
we deal with, decision trees and nearest neighbor, and we show the contribution
of our approach to alleviate the decision process. We rely on some experiments
we perform over network records from the KDD 99 dataset, first by a direct
application of these two algorithms on the rough data, second after projection of
the different datasets on the new feature space.

Keywords: Intrusion Detection, Principal Component Analysis, KDD 99, Decision Trees,
Nearest Neighbor

1. Introduction

A modern computer network should acquire many mechanisms to ensure the
security policy of data and equipment inside the network. Intrusion detection
systems (IDSs) are an integral package in any well configured and managed
computer system or network. IDSs may be some software or hardware systems
that monitor the different events occuring in the actual network and analyze
them for signs of security threats.

There are two major approaches in intrusion detection: anomaly detection
and misuse detection. Misuse detection consists of first recording and repre-

2

senting the specific patterns of intrusions that exploit known system vulnera-
bilities or violate system security policies, then monitoring current applications
or network traffic activities for such patterns, and reporting the matches. There
are several developed models in misuse intrusion detection [Ilgun, 1993; Ku-
mar and Spafford, 1994]. They differ in representation as well as the matching
algorithms employed to detect such threat patterns. Anomaly detection, on the
other hand, consists of building models from normal data and then detect vari-
ations from the normal model in the observed data. Anomaly detection was
originally introduced by Anderson [Anderson, 1980] and Denning [Denning,
1987]. The main advantage with anomaly intrusion algorithms is that they can
detect new forms of attacks, because these new intrusions will probably deviate
from the normal behavior [Denning, 1987].

There are many IDSs developed during the past three decades. However,
most of the commercial and freeware IDS tools are signature based [Roesch,
1999]. Such tools can only detect known attacks previously described by their
corresponding signatures. The signature database should be maintained and
updated periodically and manually for new attacks. For this reason, many data
mining and machine learning algorithms are developed to discover new attacks
that are not described in the training labeled data.

Literature survey on intrusion detection indicates that most researchers ap-
plied an algorithm directly [Pfahringer, 2000; Agrawal and Joshi, 2000; Levin,
2000] on the rough data obtained from network traffic or other local or re-
mote applications. The majority of the machine learning algorithms applied to
anomaly intrusion detection suffers from the high consuming time [Pfahringer,
2000] when applied directly on rough data. The KDD 99 cup intrusion detec-
tion datasets [KDD Cup, 1999] are an example where many machine learning
algorithms, mostly inductive learning based, were applied directly on the data
which is a binary TCPdump data processed into connection records. Each con-
nection record corresponds to a normal connection or to a specified attack as
described in section 2.

Much of the previous work on anomaly intrusion detection in general and on
the KDD 99 cup datasets in particular ignored the issue of just what measures
of the user, application and/or network traffic behavior stimulus are important
for intrusion detection. This suggested to us that an information theory ap-
proach coding and decoding user/application or connection record behaviors
may give new information content of user/attack behaviors, emphasizing the
significant local or global "features". These features may or may not be di-
rectly related to the actual used metrics or attributes such as CPU consumed
time, number of web pages visited during a session in the case of user behav-
iors and such as the used protocol, service in the case of network connection
records. In the remaining of this paper, we will be just interested in network

Eigenconnections to Intrusion Detection 3

connection records (for more details on profiles’ behaviors, see [Bouzida and
Gombault, 2003]).

In the language of information theory, we want to extract the relevant infor-
mation in a network connection record, encode it efficiently, and compare one
network connection record encoding with a database of network connection
records encoded similarly. A simple approach to extract the information con-
tained in a network connection record is to capture the variation in a collection
of connection records, independently of any judgement of feature, and use this
information to encode and compare network connection records.

In mathematical terms, we wish to find the principal components of the dis-
tribution of the connection records, or the eigenvectors of the covariance matrix
of the set of the connection records [Jolliffe, 2002]. These eigenvectors can be
thought of as a set of features which together characterize the variation be-
tween records connections. Each connection record location contributes more
or less to each eigenvector which we call "eigenconnection". Each connection
record can be presented exactly in terms of linear combination of the eigen-
connections. Each connection can also be approximated using only the best
-"eigenconnections"- those that have the largest eigenvalues, and which there-
fore account for the most variance within the set of connection records. The
best � eigenconnections span an � dimensional subconnection -"connection
space"- of all possible connection records.

This new space is generated by an information theory method called Prin-
cipal Component Analysis (PCA) [Jolliffe, 2002]. This method has proven to
be an exceedingly popular technique for dimensionality reduction and is dis-
cussed at length in most texts on multivariate analysis. Its many application
areas include data compression [Kirby and Sirovich, 1990], image analysis,
visualization, pattern recognition [Turk and Pentland, 1991] and time series
prediction.

The most common definition of PCA, due to Hotelling (1933) [Hotelling,
1933], is that, for a set of observed vectors �������	��
������������������� , the � prin-
cipal axes �������	����������������������� are those orthonormal axes onto which the
retained variance under projection is maximal. It can be shown that the vectors
� � are given by the � dominent eigenvectors (i.e. those with largest associ-

ated eigenvalues) of the covariance matrix � �"! �$#&%('*) %,+-#&%('�) %,+/.0 such that
�1�2���435�6�2� , where � is the simple mean. The vector 78�9�4:<;�=>���@? �BA ,
where : �C=>�ED��(�GFH���������(�GI�A , is thus a q-dimensional reduced representation
of the observed vector � � .

We investigate, in this paper, an eigenconnection approach based on princi-
pal component analysis for anomaly intrusion detection applied to the different
KDD 99 intrusion detection cup datasets.

This paper is organized as follows: Section 2 describes the different KDD
99 intrusion detection cup datasets. Sections 3 and 5 introduce the application

4

of two algorithms; the nearest neighbor and decision trees, where in section 3
these algorithms are briefly presented and in section 5, we present and discuss
the different results obtained by using these two algorithms on rough data or
after reduction of the feature space using PCA. Section 4 provides the eigen-
connection approach for dimensionnality reduction of data. Finally, section 6
concludes the paper.

2. Description of KDD 99 intrusion detection datasets

The main task for the KDD 99 classifier learning contest [KDD Task, 1999]
was to provide a predective model able to distinguish between legitimate (nor-
mal) and illegitimate (called intrusion or attacks) connections in a computer
network. The training dataset contained about 5,000,000 connection records,
and the training 10% dataset consisted of 494,021 records among which there
were 97,278 normal connections (i.e. 19.69%). Each connection record con-
sists of 41 different attributes that describe the different features of the corre-
sponding connection, and the value of the connection is labeled either as an
attack with one specific attack type, or as normal. The ��� different attack types
present in the 10% datasets are given in table 1.

Each attack type falls exactly into one of the following four categories:

1 Probing: surveillance and other probing, e.g., port scanning;

2 DOS: denial-of-service, e.g. syn flooding;

3 U2R: unauthorized access to local superuser (root) privileges, e.g., vari-
ous "buffer overflow" attacks;

4 R2L: unauthorized access from a remote machine, e.g. password guess-
ing.

The task was to predict the value of each connection (normal or one of the
above attack categories) for each of the connection record of the test dataset
containing 311,029 connections.

It is important to note that

the test data is not from the same probability distribution as the training
data and

the test data includes some specific attack types not in the training data.
There are ��� different attacks types out of ��� present in the training
dataset. The remaining attacks are present in the test dataset with differ-
ent rates towards their corresponding categories. There are � new U2R
attack types in the test dataset that are not present in the training dataset.
These new attacks correspond to ��� �����	� (189/228) of the U2R class in

Eigenconnections to Intrusion Detection 5

the test dataset. On the other hand, there are � new R2L attack types cor-
responding to ��� � (10196/16189) of the R2L class in the test dataset. In
addition, there are only � ��� (out of � � ���) connection records present in
the training dataset corresponding to the known R2L attacks present si-
multaneously in the two datasets. However, there are � new DOS attack
types in the test dataset corresponding to � ����� � (6555/229853) of the
DOS class in the test dataset and � new Probing attacks corresponding
to 42.94% (1789/4166) of the Probing class in the test dataset.

Table 1. The different attack types.

Probing DOS U2R R2L
ipsweep, apache2, back, buffer overflow, ftp write, guess passwd,
mscan, land, mailbomb, httptunnel, imap, multihop, named, phf,
nmap, neptune, pod, loadmodule, perl, sendmail, snmpgetattack,
portsweep, processtable, ps, rootkit, snmpguess, spy, warezclient,
saint, smurf, teardrop, sqlattack, xterm. warezmaster, worm, xlock,
satan. udpstorm. xsnoop.

We ran our experiments using two different machine learning algorithms;
the nearest neighbor and decision trees, on the 10 % KDD 99 intrusion detec-
tion cup [KDD Cup, 1999] generated by the MIT Lincoln Laboratory. Lincoln
Labs set up an environment to acquire nine weeks of raw TCPdump data for
a local-area network (LAN) simulating a typical U.S. Air Force LAN. They
operated the LAN as if it were a true Air Force environment, but peppered it
with the ��� different attacks types. The TCPdump data collected from the net-
work traffic was transformed into connection records using some data mining
techniques [Lee et al., 1999].

3. Nearest neighbor and decision trees

3.1 Nearest Neighbor NN

One of the easiest method in machine learning field is the nearest neighbor
method or NN. It consists of classifying new observations into their appropriate
categories by a simple comparison with the known well classified observations.
Recall that the only knowledge we have is a set of � ��� �
	 D����� � points correctly
classified into categories. It is reasonable to assume that observations which
are close together -for some appropriate metric- will have the same classifica-
tion. Thus, when classifying an unknown sample � , it seems appropriate to
weight the evidence of the nearby’s heavily. One simple non-parametric deci-
sion procedure of this form is the nearest neighbor rule or NN-rule. This rule
classifies � in the category of its nearest neighbor. More precisely, we call ���

6

a nearest neighbor to � if �
�� � =�� ��� � A � � � �(�����	�
�
 �C����� � ��� and
�

is the
distance between the two considered points such as the Euclidean distance.

After its first introduction by Fix and Hodges [Fix and Hodges, 1951], the
NN classifier has been used and improved by many researchers [Bay, 1998;
Dasarathy, 1991] and employed on many data sets from UCI repository [Het-
tich and Bay, 1999]. A common extension is to choose the most common class
in the kNN. The kNN is performed on KDD 99 intrusion detection datasets by
Eskin et. al [Eskin et al., 2003]. It was applied for another purpose where the
dataset is filtered and the percentage of attacks is reduced to ����� � in order to
perform unsupervised anomaly detection. In the following, we are interested
in applying the � � classifier on the different datasets with its simplest form.
That is compute all possible distance pairs between all the training data set and
the test dataset records.

Since our datasets consist of continuous and discrete attributes values, we
have converted the discrete attibutes values to continuous values following the
following idea. Consider we have G� possible values for a discrete attribute
 .
For each discrete attribute correpond �� ��� coordinates. There is one coordi-
nate for every possible value of the attribute. Then, the coordinate correspond-
ing to the attribute value has a value of 1 and all other remaining coordinates
corresponding to the considered attribute have a value of 0. As an example,
if we consider the protocol type attribute which can take one of the follow-
ing discrete attributes tcp, udp or icmp. Then, there will be three coordinates
for this attribute. If the connection record has a tcp (resp. udp or icmp) as
a protocol type then the corresponding coordinates will be � � � ��� (resp.
� � � � � or � � � � �). With this transformation, each connection record
in the different KDD 99 datasets will be represented by � ��� (� different val-
ues for the protocol type, � � different values for the flag attribute, � � possible
values for the service attribute and � or � for the other remaining � discrete
attributes) coordinates instead of �5� according to the above discrete attributes
values transformation.

3.2 Decision trees

Decision tree induction has been studied in details in both areas of pattern
recognition and machine learning. In the vast area concerning decision trees,
also known as classification trees or hierarchical classifiers, at least two sem-
inal works are to be mentioned, those by Quinlan [Quinlan, 1986] and those
by Breiman et al. [Breiman et al., 1984]. The former synthesizes the experi-
ence gained by people working in the area of machine learning and describes
a computer program called ID3, which has evolved in a new system, named
C4.5 [Quinlan, 1993]. The latter originated in the field of statistical pattern
recognition and describes a system, named CART (Classification And Regres-

Eigenconnections to Intrusion Detection 7

sion Trees), which has mainly been applied to medical diagnosis. A decision
tree is a tree that has three main components: nodes, arcs, and leaves. Each
node is labeled with a feature attribute which is most informative among the
attributes not yet considered in the path from the root, each arc out of a node is
labeled with a feature value for the node’s feature and each leaf is labeled with
a category or class.

Most of the decision trees algorithms use a top down strategy; i.e from the
root to the leaves. Two main processes are necessary to use the decision trees:

Building process: it consists of building the tree by using the labeled
training dataset. An attribute is selected for each node based on how
it is more informative than others. Leaves are also assigned to their
corresponding class during this process.

Classification process: A decision tree is important not because it sum-
marizes what we know, i.e. the training set, but because we hope it will
classify correctly new cases. Thus, when building classification mod-
els, one should have both training data to build the model and test data
to verify how well it actually works. New instances are classified by
traversing the tree from up to down based on their attribute values and
the node values until one leaf is reached that corresponds to the class of
the new instance.

We use the C4.5 algorithm [Quinlan, 1993] to construct the decision trees
where Shanon Entropy is used to measure how informative is a node. The
selection of the best attribute node is based on the gain ratio ����
��������
��B=
	$���1A
where 	 is a set of records and � a non categorical attribute. This gain defines
the expected reduction in entropy due to sorting on A. It is calculated as the
following [Mitchell, 1997]:

����
��2=
	 ���1A��� ��� ������� =
	@A$? �
%���������� �"!�#$# +

��	 % ���	 � ��� ������� =
	 % A (1)

In general, if we are given a probability distribution % � =&� D��'� F���� � �'�)(5A then
the information conveyed by this distribution, which is called the Entropy of %
is :

 ��� ���*�)�8='%9A � ?
(
�
�
	 D

���,+'� - F"��� (2)

If we consider only (1) then an attribute with many values will be automatically
selected. One solution is to use ����
��������
�� instead [Quinlan, 1986]

�.��
������/�
��B=
	$���EA2� �.��
��2=
	$���EA
	0��+>

�"1 ��23� � �4���
�� �2=
	$���1A (3)

8

where

	���+>

� 1
��23� � �4�/�
�� �2=
	$���EA � ?
�

�
� 	 D

��	 � �
��	 � +'� -�F

� 	 � �
�/	 � (4)

where 	 � is a subset of 	 for which � has a value � � .

4. Eigenconnection approach

Principal component analysis (PCA) is a mathematical procedure that trans-
forms a number of (possibly) correlated variables into a (smaller) number of
uncorrelated variables called principal components. The objective of principal
component analysis is to reduce the dimensionality (number of variables) of the
dataset but retain most of the original variability in the data. The first principal
component accounts for as much of the variability in the data as possible, and
each succeeding component accounts for as much of the remaining variability
as possible. In this section, we investigate the eigenconnection approach based
on the principal component analysis. In our case, each connection record cor-
responds to one vector of � variables corresponding to the different attributes
in the different datasets. The procedure is the following:

The set of � different measures are collected in a vector called connection
record vector representing the corresponding connection. So if

�
is a connec-

tion vector then we can write

� �
����
�
��D
� F

...
� (

�����
	 (5)

where � � �2
G� ��������� � � correspond to the different measures. In most cases,
the connection vectors are very similar and they can be described by some
basic connection vectors.

This approach involves the following initialization procedure:

1 acquire an initial set of connection records (this set is called the training
set). In this paper, we use the kdd 99 10% training dataset containing
� � �	� �B� � � � connection records;

2 calculate the eigenconnections from the training set, keeping only � �
= � ��
 � A eigenconnections that correspond to the highest eigenvalues.
These � � connections define the connection space.

3 calculate the corresponding distribution in � �5? �
�� � ���
 � ��� + ? weight
space for each known connection record, by projecting their connection
vectors onto the connection space;

Eigenconnections to Intrusion Detection 9

4 (optional) perform a machine learning algorithm (building process) on
the new datasets in the new connection space; for the decision tree algo-
rithm, it is necessary to build the tree which will be used in the detection
process. However, there is no need to perform the NN algorithm at this
stage. This is the reason why this step is optional depending on the ma-
chine learning algorithm being used.

Having projected the training data onto the new feature space, the following
steps are then used to classify and detect intrusions from the new connection
records in the test data:

1 calculate a set of weights based on the input connection record and the � �
eigenconnections by projecting the input connection record vector onto
each eigenconnection,

2 use one of the different machine learning algorithms (classification pro-
cess) to detect intrusions from the new connection records represented
in the new feature space.

4.1 Calculating the eigenconnections

Let the training set of connection vectors be
� D�� � FH������� � � � . The average

connection � of this set is defined by:

�<� ��
�
�
� 	 D

� � (6)

Each connection record vector
� � differs from the average � by:

� �8� � � ?�� (7)

The eigenconnections are the eigenvectors of the covariance matrix � where

� # (���(+ �
�
�

�
�
�
	 D

� � � ; � ��� � ; (8)

� # (�� � + �
�� �

� � D � F ����� � ��� (9)

Let 	�
 be the � th eigenvector of � , 3
 the associated eigenvalue and � #�� � ��� + �� � D � F$����� ��� � � the matrix of these eigenvectors (eigenconnections). Then

��	�
�<3�
�	�
 (10)

such that

10

	 ;
 	 � �
� � if � ��+

� if �����+ (11)

The feature vector corresponding to the connection record
� � is :

� � � 	 ;�� � � �
����
�
� D� F
...� (�

�����
	 (12)

If the length of the connection record vector is � (number of considered at-
tributes), the matrix � is � � � . The principal component analysis of the
contextual covariance matrix � is obtained by calculating its eigenvalues and
eigenvectors, and ordering the eigenvalues (and the corresponding eigenvec-
tors) in decreasing order. The sub-space generated by the eigenvectors corre-
sponding to the highest eigenvalues has the highest inertia. By construction,
all the directions of the eigenvectors are orthogonal. The principal compo-
nents associated with the smallest eigenvalues often correspond to not interest-
ing information [Jolliffe, 2002]. Therefore, they are usually removed. Other
strategies can be adopted to select the components [Jolliffe, 2002].

The quantity given by

(��
�
	 D
3 � (13)

is called inertia explained by the subspace generated by the first � � = � �
 � A
eigenvectors of � .

In practice, the number of the principal factorial components chosen de-
pends on the precision we wish to reach. In general, we can limit to 2, 3 or 4
considered principal factors (axes). The inertia ratio explained by these axes is

� � !
(��
	 D 3 �
! (�
	 D 3B� (14)

This ratio defines the information rate kept, from the whole rough input data,
by the corresponding � � eigenvalues.

5. Experimental methodology and results

In this section, we will present the different results and experiments obtained
when directly applying the two methods discussed in section 3 on the different
KDD 99 cup datasets or with a combination with Principal Component Anal-
ysis; first by projecting all data on the new space generated by the few number

Eigenconnections to Intrusion Detection 11

PCA’s principal axes then applying the nearest neighbor or decision trees al-
gorithm on the datasets but after their projection on the new reduced PCA’s
space.

The accuracy of each experiment is based on the percentage of successful
prediction (PSP) on the test dataset.

% 	 % � �87���� �	� ��2 ��7���� � � � 2 7�+5
��� � � ��� ��� +'� � ��
 2
�� �/�
�� �
�87 ��� � � ��2
 �� � � ���	� �
�� � ��� � � � � � ��� (15)

5.1 Nearest neighbor with/without PCA

The first experiment, we perform, consists in evaluating the nearest neigh-
bor algorithm on the KDD 99 database. The main problem encountered when
computing the nearest neighbor is that it is computationally expensive to com-
pute the nearest neighbor of each point. The complexity of this computation
is � = � � A where � is the number of connection records in the training dataset
and � in the test dataset. Each distance computation between two connection
records depends on the number of space coordinates where they are repre-
sented. Of course, this algorithm may be approximated with a cluster based
estimation algorithm [Han and Kamber, 2001]. However, the distance between
two connection records remains dependent on the coordinates number of the
feature space. For this reason, we have projected the different datasets con-
nections on the new feature space generated by the principal component axes.
There are � ��� coordinates of each connection in KDD 99 after transformation
for discrete attribute values as explained in section 3 (41 attributes added to the
representation of each discrete value that has at least two coordinates).

Table 2 presents the confusion matrix when applying directly the nearest
neighbor on the feature space generated by these � ��� coordinates.

Table 2. Confusion matrix obtained with the nearest neighbor algorithm on 125 coordinates.

Predicted as Normal Probing DOS U2R R2L
Actual
Normal(60593) 99.50% 0.26% 0.24% 0.00% 0.00%
Probing(4166) 17.21% 72.01% 10.28% 0.00% 0.50%
DOS(229853) 2.87% 0.12% 97.01% 0.00% 0.00%
U2R(228) 39.96% 18.80% 32.01% 6.60% 2.63%
R2L(16189) 96.12% 2.65% 0.00% 0.02% 1.21%

PSP=92.05%

Using the same algorithm (the nearest neighbor), we have experimented the
test dataset on a new feature space generated by at most seven PCA’s axes. We

12

have performed the different experiments by considering 2, 3, ..., or 7 axes.
The results are not much different from each other when we consider from �
to � axes. Table 3 shows the confusion matrix when we consider four axes
(i.e. each connection record in the different datasets is represented by only
four coordinates).

Table 3. Confusion matrix obtained with the nearest neighbor on 4 coordinates after perform-
ing PCA .

Predicted as Normal Probing DOS U2R R2L
Actual
Normal(60593) 99.50% 0.27% 0.23% 0.00% 0.00%
Probing(4166) 13.87% 74.40% 11.37% 0.00% 0.36%
DOS(229853 2.68% 0.18% 97.14% 0.00% 0.00%
U2R(228) 35.96% 14.47% 39.03% 7.91% 2.63%
R2L(16189) 97.49% 1.71% 0.00% 0.00% 0.80%

PSP=92.22%

The confusion matrix in table 3 shows that the results after PCA application
are slightly better. In addition, the computation time is reduced by a factor
of approximately thirty (� � ��� � �) when considering 4 principal components.
Hence, it is better to reduce the space on which the connection records are
represented before applying any machine learning algorithm. This first exper-
imentation is used to show that a combination between PCA and the nearest
neighbor performs well even if a few axes are considered (at most seven) to
represent the records. According to equation (14), the inertia ratio is close to 1
(0.999) when considering only 4 axes. This is the reason why a representation
with only four axes provides a good prediction rate.

In the two experiments, the two last classes R2L and U2R are not well de-
tected. The maximum PSP for U2R class is ����� � � and ����� � � for R2L.

5.2 Decision trees with/without PCA

This section presents experimental results using decision trees with the C4.5
algorithm. This latter is applied, in the first experiment, directly on the different
datasets using the whole 41 attributes and then compared to its application on
the datasets but after their projection onto the new space generated by the few
principal component axes number.

During our experiments, we have considered, as in [BenAmor et al., 2004],
two cases. The first consists in grouping the whole ��� attacks types into four
attack categories before training. In the second case, they are gathered after
classification.

Eigenconnections to Intrusion Detection 13

Decision trees without PCA. In this section, we present the different results
obtained when applying directly the C4.5 algorithm on rough data. Table 4
evaluates the application of the C4.5 algorithm on the dataset by gathering the
whole attacks into four categories before the training step and its application
on the rough dataset after classification.

Table 4. Confusion matrix relative to five classes using the C4.5 algorithm. The values be-
tween parentheses correspond to gathering the whole attacks results into five categories after
classification.

Predicted as %Normal %Probing %DOS %U2R %R2L
Actual
Normal(60593) 99.49(99.42) 0.36(0.39) 0.12(0.15) 0.00(0.00) 0.02(0.03)
Probing (4166) 21.32(15.75) 74.70(78.80) 3.98 (5.45) 0.00(0.00) 0.00(0.00)
DOS (229853) 2.68(2.58) 0.00(0.46) 97.31(96.96) 0.00(0.00) 0.00(0.00)
U2R (228) 90.79(56.58) 1.75(28.51) 0.44(0.88) 4.39(5.26) 2.63(8.77)
R2L (16189) 92.03(94.63) 2.10(0.07) 0.01(0.00) 0.02 (0.03) 5.84(5.27)

PSP=92.60%,(PSP=92.35%)

The different results obtained in this first experiment show that gathering the
attacks before training or after classification does not influence the percentage
of successful prediction. The two classes U2R and R2L are classified with a
percentage of successful prediction of at most 5.84%. This is due to the low
number of samples of these two classes in the training set; 0.01% examples
of U2R in the training set (resp. 0.23% of R2L) versus 0.07% of U2R (resp.
5.20% of R2L) in the test dataset and to the new forms of these two attacks
classes that appear in the test dataset which are not present in the training set.

Decision trees with PCA. We now apply the C4.5 on the new feature space
generated by the principal axes. All the training dataset and the test dataset
connection records are projected onto the new feature space. This new feature
space is generated by at most 7 axes in our different experiments to validate
the results of combining PCA with the C4.5 decision trees algorithm.

According to tables 5 and 8 1, there is a slight difference between the use
of decision trees on rough data and their combination with PCA on the new
feature space.

However, it is important to mention that the number of nodes in the decision
tree generated when we apply C4.5 on rough data is greater than that of nodes
in the decision tree when applied with the different datasets but in the new

1PCA � corresponds to the projection of the data onto the first � principal axes corresponding to the first �
highest eigenvalues.

14

Table 5. Confusion matrix relative to five classes using the C4.5 algorithm after dataset pro-
jection onto two principal component axes. The values between parentheses correspond to
gathering the whole attacks results into five categories after classification.

Predicted as %Normal %Probing %DOS %U2R %R2L
Actual
Normal(60593) 99.00(98.99) 0.85(0.84) 0.12(0.12) 0.00(0.00) 0.03(0.04)
Probing(4166) 29.60(30.20) 66.80(66.30) 3.50(3.50) 0.10(0.00) 0.00(0.00)
DOS(229853) 2.42(2.42) 0.33 (0.33) 97.25(97.25) 0.00 (0.00) 0.00 (0.00)
U2R(228) 92.98(91.23) 0.00(0.00) 0.44(0.00) 6.58(8.33) 0.00(0.44)
R2L(16189) 99.94(97.69) 0.00(0.00) 0.06(0.01) 0.00(0.00) 0.01(2.30)

PSP=92.05%(PSP=92.16%)

feature space generated by the PCA. In addition, the training time consumed
to construct the decision tree with the new data in the feature space, generated
by at most � ��� �	� principal components, is more interesting as presented in
table 6.

Table 6. Time and tree size with/without PCA.

Decision trees without PCA Decision trees with PCA
Number of nodes � �������

before pruning ����� � before pruning
��� ��� after pruning ��	 �
� after pruning

Training time �������� �
����� � ���������

Furthermore, the problem of the prediction ratio with the last two classes
persists always as mentioned in the previous subsection. The highest predicted
successful ratio obtained with the R2L class does not exceed 2.30%. This is
because the principal components associated with the smallest eigenvalues of-
ten correspond to not interesting information [Jolliffe, 2002] that corresponds
in reality in our case to the classes that are not present with high rates in the
training set and we are taking into account only the highest eigenvalues. This
is the reason why the R2L class prediction ratio is very small. To circumvent
this problem, we have considered other axes corresponding to lower principal
axes. In this case, we have obtained 5.86% as the highest prediction ratio for
the R2L class.

Table 7 presents the best prediction ratios when considering other compo-
nents axes not presented in tables 5 and 8.

According to table 7, the results obtained by combining decision trees with
PCA are slightly better than those in table 4 when applying directly decision
trees on rough data. We may improve the prediction ratio, when combining

Eigenconnections to Intrusion Detection 15

Table 7. The best prediction ratios obtained for each class when considering different principal
components.

Attack Category Normal Probing DOS U2R R2L
(60593) (4166) (229853) (228) (16189)

Detection Ratio 99.52% 78.84% 98.26% 12.72% 5.86%

PSP=92.63%

decision trees with PCA, of the last two classes by duplicating their different
samples in the training set. By this reasonning, they will not be considered as
less interesting information.

6. Conclusion

We have presented in this paper a new idea on how to reduce the different
representation spaces before applying some machine learning algorithms on
the different KDD 99 intrusion detection datasets. This new representation
permits to improve the learning time and space representation of the different
datasets with a similar successful prediction in the whole experiments.

The main drawback which persists in combining decision trees or the nearest
neighbor with PCA is the poor prediction ratio rate of the R2L class which is
in most of the time classified as normal. This is due to its low presence in the
training dataset (0.23%). We may improve this ratio by boosting the number of
samples of this class in the training dataset before applying the PCA algorithm
in order to transform it into an interesting information class represented by a
principal component corresponding to a higher eigenvalue.

However, the new attacks types that are present in the two last classes, R2L
and U2R, in the test data set could not be detected by machine learning al-
gorithms [Sabhnani and Serpen, 2004]. This suggests to perform other unsu-
pervised machine learning or data mining algorithms to deal with these new
attacks that should be detected as new attacks. Hence, we may add a new class
that we call new attacks class to which new attacks, which are not looking sim-
ilar to the known attacks in the training dataset, will be classified. This will be
discussed in a forthcoming paper.

16

Table 8. Confusion matrix relative to five classes using the C4.5 algorithm after dataset pro-
jection onto 3,4,5,6 or 7 principal component axes. The values between parentheses correspond
to gathering the whole attacks results into five categories after classification.

Predicted as %Normal %Probing %DOS %U2R %R2L
Actual
Normal (60593)
PCA3 99.47(99.52) 0.35(0.32) 0.13(0.12) 0.00(0.00) 0.05(0.04)
PCA4 99.43(99.51) 0.36(0.34) 0.13(0.12) 0.01(0.01) 0.07(0.02)
PCA5 99.23(99.19) 0.39(0.37) 0.22(0.27) 0.00(0.16) 0.15(0.02)
PCA6 99.46(99.47) 0.36(0.34) 0.16(0.15) 0.00(0.02) 0.02(0.02)
PCA7 99.39(99.42) 0.35(0.14) 0.24(0.02) 0.00(0.06) 0.02(0.36)
Probing (4166)
PCA3 28.88(30.63) 67.67(62.12) 3.36(7.25) 0.10(0.00) 0.00(0.00)
PCA4 24.20(30.56) 69.40(63.08) 6.39(6.34) 0.00(0.00) 0.02(0.02)
PCA5 13.85(16.30) 76.26(73.09) 8.93(10.30) 0.00(0.29) 0.96(0.02)
PCA6 18.31(22.56) 76.48(69.40) 5.21(8.02) 0.00(0.02) 0.00(0.00)
PCA7 14.98(22.71) 75.76(69.28) 9.27(8.02) 0.00(0.00) 0.00(0.00)
DOS (229853)
PCA3 2.60(2.75) 0.20(0.00) 97.18(97.25) 0.00(0.00) 0.02(0.00)
PCA4 2.53(2.76) 0.27(0.05) 97.17(97.17) 0.00(0.00) 0.02(0.02)
PCA5 2.70(2.69) 0.02(0.06) 97.26(97.16) 0.00(0.00) 0.02(0.09)
PCA6 2.76(2.77) 0.02(0.03) 97.20(97.06) 0.00(0.00) 0.02(0.14)
PCA7 2.71(2.75) 0.04(0.03) 97.22(97.06) 0.00(0.00) 0.02(0.16)
U2R (228)
PCA3 85.09(65.35) 1.75(9.65) 0.44(14.91) 12.72(8.33) 0.00(1.75)
PCA4 68.86(77.63) 9.65(5.70) 9.65(9.65) 5.26(6.58) 6.58(0.44)
PCA5 35.53(62.28) 47.37(19.74) 11.40(13.60) 4.39(3.95) 1.32(0.44)
PCA6 38.16(41.23) 47.37(3.51) 7.46(48.25) 5.70(4.39) 1.32(2.63)
PCA7 38.16(41.23) 47.37(3.51) 7.46(48.25) 5.70(4.39) 1.32(2.63)
R2L (16189)
PCA3 99.60(99.60) 0.02(0.02) 0.02(0.02) 0.01(0.01) 0.35(0.35)
PCA4 99.83(99.81) 0.03(0.01) 0.03(0.03) 0.01(0.02) 0.11(0.12)
PCA5 99.81(99.38) 0.02(0.14) 0.04(0.04) 0.03(0.04) 0.10(0.41)
PCA6 99.82(99.43) 0.02(0.14) 0.03(0.02) 0.04(0.05) 0.09(0.36)
PCA7 99.81(99.42) 0.02(0.14) 0.02(0.02) 0.06(0.06) 0.09(0.36)

PSP3=92.12%(PSP3=92.11%),PSP4=92.12%(PSP4=92.05%)
PSP5=92.23%(PSP5=92.13%),PSP6=92.24%(PSP6=92.06%)

PSP7=92.23%(PSP7=92.05%)

Acknowledgements

The authors thank Nora and Frédéric Cuppens for the different discussions
and their helpful comments on early versions of this paper.

Eigenconnections to Intrusion Detection 17

References
Agrawal, R. and Joshi, M. V. (2000). PNrule: A New Framework for Learning Classifier Models

in Data Mining A Case-Study in Network Intrusion detection. Technical Report RC-21719,
IBM Research Division.

Anderson, J. P. (1980). Computer Security Threat Monitoring and Surveillance. Technical re-
port, James. P. Anderson Co., Fort Washington, Pennsylvania.

Bay, S. D. (1998). Combining Nearest Neighbor Classifiers Through Multiple Feature Subsets.
In Proceedings of the 15th International Conf. on Machine Learning, pages 37–45, San
Francisco, CA. Morgan Kaufmann.

BenAmor, N., Benferhat, S., and ElOuedi, Z. (2004). Naive Bayes vs Decision Trees in Intru-
sion Detection Systems. In The 19th ACM Symposium On Applied Computing - SAC 2004,
Nicosia, Cyprus.

Bouzida, Y. and Gombault, S. (2003). Intrusion Detection Using Principal Component Analysis.
In Proceedings of the 7th World Multiconference on Systemics, Cybernetics and Informatics,
Orlando, Florida.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regres-
sion Trees.

Dasarathy, B. V. (1991). A Computational Demand Optimization Aide for Nearest-Neighbor-
Based Decision systems. In IEEE International Conference on Systems, Man and Cybernet-
ics, pages 1777–1782. Morgan Kaufmann.

Denning, D. (1987). An Intrusion Detection Model. IEEE Transactions on Software Engineer-
ing, 13(2):222–232.

Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo, S. (2003). A Geometric framework
for unsupervised anomaly detection: Detecting intrusions in unlabeled data. Applications of
Data Mining in Computer Security.

Fix, E. and Hodges, J. L. (1951). Discriminatory analysis: Nonparametric discrimination: Con-
sistency properties. Technical Report 21-49-004, USAF School of Aviation Medecine, Ran-
dolf Field, Texas.

Han, J. and Kamber, M. (2001). Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers.

Hettich, S. and Bay, S. D. (1999). The UCI KDD Archive. Available at: http://kdd.ics.uci.edu/.
Hotelling, H. (1933). Analysis of a complex statistical variables into principal components.

Journal of Educational Psychology, 24:417–441.
Ilgun, K. (1993). Ustat, a real time intrusion detection system for UNIX. In IEEE Symposium

on Security and Privacy, pages 16–28, Oakland, CA.
Jolliffe, I. T. (2002). Principal Component Analysis. Springer Verlag, New York, NY, third edi-

tion.
KDD Cup (1999). KDD Cup 99 Intrusion Detection Datasets. Available at: http://kdd.ics.uci.

edu/databases/kddcup99/kddcup99.html.
KDD Task (1999). KDD 99 Task. Available at: http://kdd.ics.uci.edu/databases/kddcup99/task.

html.
Kirby, M. and Sirovich, L. (1990). Application of the KarhunenLoeve Procedure for the Char-

acterization of Human Faces. IEEE Transactions On Pattern Analysis and Machine Intelli-
gence, 12(1):103–107.

Kumar, S. and Spafford, E. (1994). A pattern matching model for misuse intrusion detection. In
Proceedings of the 17th National Computer security Conference, pages 11–21.

18

Lee, W., Stolfo, S. J., and Mok, K. (1999). Mining in a data flow environment: Experience
in intrusion detection. In Proceeding of the 1999 Conference on Knowledge Discovery and
Data Mining KDD-99.

Levin, I. (2000). KDD-99 Classifier Learning Contest LLSoft’s Results Overview. SIGKDD
Explorations. ACM SIGKDD, 1:67–71.

Mitchell, T. M. (1997). Machine Learning. McGraw Hill.
Pfahringer, B. (2000). Winning the KDD Classification Cup: Bagged Boosting. SIGKDD Ex-

plorations. ACM SIGKDD, 1:65–66.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1:1–106.
Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann Publishers.
Roesch, M. (1999). Snort - Lightweight Intrusion Detection for Networks. In 13th Systems

Administration Conference - LISA 99.
Sabhnani, M. and Serpen, G. (2004). On Failure of Machine Learning Algorithms for detecting

Misuse in KDD intrusion Detection Data Set. Intelligent Analysis. To Appear.
Turk, M. and Pentland, A. (1991). Eigenfaces for Recognition. Cognitive Neuroscience, 13(1):71–

96.

