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Most current intrusion detection systems are signaturedases or machine learning based methods. Despite the
number of machine learning algorithms applied to KDD 99 cume of them have introduced a pre-model to reduce the
huge information quantity present in the different KDD 9%d#ts. We introduce a method that applies to the different
datasets before performing any of the different machinenieg algorithms applied to KDD 99 intrusion detection
cup. This method enables us to significantly reduce theimdtion quantity in the different datasets without loss of
information. Our method is based on Principal Componentlysig (PCA). It works by projecting data elements onto
a feature space, which is actually a vector sga&ethat spans the significant variations among known dataestesn

We present two well known algorithms we deal with, decisiee$ and nearest neighbor, and we show the contribution
of our approach to alleviate the decision process. We reloome experiments we perform over network records from
the KDD 99 dataset, first by a direct application of these tigorthms on the rough data, second after projection of
the different datasets on the new feature space.

Mots-clés: Intrusion Detection, Principal Component Analysis, KDD B&cision Trees, Nearest Neighbor.

1 Introduction

A modern computer network should acquire many mechanisressare the security policy of data and
equipment inside the network. Intrusion detection syst@idSs) are an integral package in any well
configured and managed computer system or network. IDSs mapine software or hardware systems
that monitor the different events occuring in the actualmogk and analyze them for signs of security
threats.

There are two major approaches in intrusion detection: atpdetection and misuse detection. Misuse
detection consists of first recording and representing pleeific patterns of intrusions that exploit known
system vulnerabilities or violate system security policidnen monitoring current applications or network
traffic activities for such patterns, and reporting the hagc There are several developed models in misuse
intrusion detection [llg93, KS94]. They differ in represation as well as the matching algorithms em-
ployed to detect such threat patterns. Anomaly detectiorthe other hand, consists of building models
from normal data and then detect variations from the nornoalethin the observed data. Anomaly detection
was originally introduced by Anderson [And80] and DenniBgh87]. The main advantage with anomaly
intrusion algorithms is that they can detect new forms @fcids, because these new intrusions will probably
deviate from the normal behavior [Den87].

There are many IDSs developed during the past three decbldegever, most of the commercial and
freeware IDS tools are sighature based [Roe99]. Such teol®nly detect known attacks previously de-
scribed by their corresponding signatures. The signatataba@se should be maintained and updated peri-
odically and manually for new attacks. For this reason, ndatg mining and machine learning algorithms
are developed to discover new attacks that are not desdrilibd training labeled data.
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Literature survey on intrusion detection indicates thasthresearchers applied an algorithm directly
[AJOO, Lev00, Pfa00] on the rough data obtained from netw@tfic or other local or remote applications.
The majority of the machine learning algorithms applied toraaly intrusion detection suffers from the
high consuming time [Pfa00] when applied directly on rougltad The KDD 99 cup intrusion detection
datasets [KDD99a] are an example where many machine lepatgorithms, mostly inductive learning
based, were applied directly on the data which is a binarydi@ data processed into connection records.
Each connection record corresponds to a normal conneatitmaospecified attack as described in section
2.

Much of the previous work on anomaly intrusion detection é@meral and on the KDD 99 cup datasets
in particular ignored the issue of just what measures of g, application and/or network traffic behavior
stimulus are important for intrusion detection. This sigigd to us that an information theory approach
coding and decoding user/application or connection rebeldiviors may give new information content of
user/attack behaviors, emphasizing the significant locglabal "features”. These features may or may
not be directly related to the actual used metrics or attedsuch as CPU consumed time, number of web
pages visited during a session in the case of user behavidrsueh as the used protocol, service in the
case of network connection records. In the remaining ofphjser, we will be just interested in network
connection records (for more details on profiles’ behayisgs [BG03]).

In the language of information theory, we want to extracrtievant information in a network connection
record, encode it efficiently, and compare one network cotiore record encoding with a database of
network connection records encoded similarly. A simplerapph to extract the information contained in
a network connection record is to capture the variation inlkection of connection records, independently
of any judgement of feature, and use this information to de@nd compare network connection records.

In mathematical terms, we wish to find the principal compas@f the distribution of the connection
records, or the eigenvectors of the covariance matrix of#teof the connection records [Jol02]. These
eigenvectors can be thought of as a set of features whickheigeharacterize the variation between records
connections. Each connection record location contriboiese or less to each eigenvector which we call
"eigenconnection” Each connection record can be presented exactly in terriseafr combination of
the eigenconnections. Each connection can also be appaitedsing only the besteigenconnections”-
those that have the largest eigenvalues, and which therafarount for the most variance within the set
of connection records. The besteigenconnections span dhdimensional subconnecticfconnection
space”-of all possible connection records.

This new space is generated by an information theory methdddcPrincipal Component Analysis
(PCA) [Jol02]. This method has proven to be an exceedingbyfas technique for dimensionality reduction
and is discussed at length in most texts on multivariateyaigl Its many application areas include data
compression [KS90], image analysis, visualization, pattecognition [TP91] and time series prediction.

The most common definition of PCA, due to Hotelling (1933) {88], is that, for a set of observed
vectors{vi}, i € {1,...,N}, theq principal axes{w;}, j € {1,...,q} are those orthonormal axes onto
which the retained variance under projection is maximalal be shown that the vectong are given
by the g dominent eigenvectors (i.e. those with largest associeigehvalues) of the covariance matrix
C=y5; W such thaCw; = Ajwj, wherev is the simple mean. The vector= wT (vi —V), where
W = (wg,Wo,...,Wq), is thus ag-dimensionateduced representation of the observed vegtor

We investigate, in this paper, an eigenconnection apprbashd on principal component analysis for
anomaly intrusion detection applied to the different KDDi8®usion detection cup datasets.

This paper is organized as follows: Section 2 describes iffereht KDD 99 intrusion detection cup
datasets. Sections 3 and 5 introduce the application of lgarithms; the nearest neighbor and decision
trees, where in section 3 these algorithms are briefly ptedeand in section 5, we present and discuss
the different results obtained by using these two algoritiem rough data or after reduction of the feature
space using PCA. Section 4 provides the eigenconnectiamagip for dimensionnality reduction of data.
Finally, section 6 concludes the paper.
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2 Description of KDD 99 intrusion detection datasets

The main task for the KDD 99 classifier learning contest [KBbPwas to provide a predective model
able to distinguish between legitimate (normal) and iliegate (called intrusion or attacks) connections
in a computer network. The training dataset contained ab@@0,000 connection records, and the train-
ing 10% dataset consisted of 494,021 records among whick there 97,278 normal connections (i.e.
19.69%). Each connection record consists of 41 differdribates that describe the different features of
the corresponding connection, and the value of the cororeigtiabeled either as an attack with one specific
attack type, or as normal. The 39 different attack typesqmieis the 10% datasets are given in table 1.
Each attack type falls exactly into one of the following faategories:

1. Probing: surveillance and other probing, e.g., port stay
2. DOS: denial-of-service, e.g. syn flooding;
3. U2R: unauthorized access to local superuser (root)@ges, e.g., varioubuffer overflow” attacks;

4. R2L: unauthorized access from a remote machine, e.gwpegguessing.

The task was to predict the value of each connection (normahe of the above attack categories) for
each of the connection record of the test dataset contaBiigD29 connections. It is important to note
that:

1. the test data is not from the same probability distribugie the training data;

2. the test data includes some specific attack types not ingiming data. There are 22 different attacks
types out of 39 present in the training dataset. The remgiaitacks are present in the test dataset
with different rates towards their corresponding categgriThere are 4 new U2R attack types in
the test dataset that are not present in the training datBisese new attacks correspond to3®%
(189/228) of the U2R class in the test dataset. On the othwt,lihere are 7 new R2L attack types
corresponding to 63% (10196/16189) of the R2L class in thedataset. In addition, there are only
104 (out of 1126) connection records present in the traidatgset corresponding to the known R2L
attacks present simultaneously in the two datasets. Hawthare are 4 new DOS attack types in
the test dataset corresponding t8526(6555/229853) of the DOS class in the test dataset andl 2 ne
Probing attacks corresponding to 42.94% (1789/4166) oPtiebing class in the test dataset.

Probing DOS U2R R2L

ipsweep, mscan,| apache2, back, buffer.overflow ftp_write, guesgpasswd, imap,

nmap, portsweep, land, mailbomb, httptunnel, loadmodule multihop, named, phf, send-

saint, satan. neptune, pod, perl, ps, mail, snmpgetattack, snmpguess,
processtable, smurf, rootkit, sglattack, spy, warezclient, warezmaster,
teardrop, udpstorm| xterm. worm, xlock, xsnoop.

Tab. 1: The different attack types.

We ran our experiments using two different machine learailggrithms; the nearest neighbor and de-
cision trees, on the 10 % KDD 99 intrusion detection cup [KBBPgenerated by the MIT Lincoln Lab-
oratory. Lincoln Labs set up an environment to acquire nieekg of raw TCPdump data for a local-area
network (LAN) simulating a typical U.S. Air Force LAN. Theyerated the LAN as if it were a true Air
Force environment, but peppered it with the 39 differeracis types. The TCPdump data collected from
the network traffic was transformed into connection recoikisg some data mining techniques [LSM99].
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3 Nearest neighbor and decision trees
3.1 Nearest Neighbor NN

One of the easiest method in machine learning field is theeseareighbor method ddN. It consists

of classifying hew observations into their appropriateegaties by a simple comparison with the known
well classified observations. Recall that the only knowkedg have is a set o i—1,. m points correctly
classified into categories. It is reasonable to assume beareations which are close together -for some
appropriate metric- will have the same classification. Thumen classifying an unknown samplét seems
appropriate to weight the evidence of the nearby’s hea@lye simple non-parametric decision procedure
of this form is the nearest neighbor rule MN-rule This rule classifiex in the category of its nearest
neighbor. More precisely, we cadl a nearest neighbor toif min d(x,x) = X ,where i=1,..,M andd is

the distance between the two considered points such as thiel&an distance.

After its first introduction by Fix and Hodges [FH51], tiNN classifier has been used and improved
by many researchers [Bay98, Das91] and employed on manysdttdrom UCI repository [HB99]. A
common extension is to choose the most common class ikRNINe The kNN is performed on KDD 99
intrusion detection datasets by Eskin et. al [EAB]. It was applied for another purpose where the dataset
is filtered and the percentage of attacks is reduced366lin order to perform unsupervised anomaly
detection. In the following, we are interested in applyihg NN classifier on the different datasets with
its simplest form. That is compute all possible distancesgagtween all the training data set and the test
dataset records.

Since our datasets consist of continuous and discretbwtts values, we have converted the discrete
attibutes values to continuous values following the follogvidea. Consider we hawg possible values for
a discrete attribute For each discrete attribute correpdrid | coordinates. There is one coordinate for
every possible value of the attribute. Then, the coordinateesponding to the attribute value has a value
of 1 and all other remaining coordinates correspondingeéactinsidered attribute have a value of 0. As an
example, if we consider the protocol type attribute which take one of the following discrete attributes
tcp, udp or icmp. Then, there will be three coordinates fs #itribute. If the connection record has a
tcp (resp. udp or icmp) as a protocol type then the correspgrabordinates will be( 100 ) (resp.
(010)or (00 1)). With this transformation, each connection record in tifeedent KDD 99
datasets will be represented by 125 (3 different valuegii®ptotocoltype 11 different values for thitag
attribute, 67 possible values for teervice attributeand 0 or 1 for the other remaining 6 discrete attributes)
coordinates instead of 41 according to the above discretbudes values transformation.

3.2 Decision trees

Decision tree induction has been studied in details in boehsaof pattern recognition and machine learn-
ing. In the vast area concerning decision trees, also kn@atlassification trees or hierarchical classi-
fiers, at least two seminal works are to be mentioned, thos@uiglan [Qui86] and those by Breiman
et al. [BFOS84]. The former synthesizes the experienceegaby people working in the area of ma-
chine learning and describes a computer program calledwb&h has evolved in a new system, named
C4.5 [Qui93]. The latter originated in the field of statisfipattern recognition and describes a system,
named CART (Classification And Regression Trees), whichigigly been applied to medical diagnosis.
A decision tree is a tree that has three main componentsshatss, and leaves. Each node is labeled with
a feature attribute which is most informative among thdkattes not yet considered in the path from the
root, each arc out of a node is labeled with a feature valughidnode’s feature and each leaf is labeled
with a category or class.

Most of the decision trees algorithms use a top down straiegyfrom the root to the leaves. Two main
processes are necessary to use the decision trees:

¢ Building process: it consists of building the tree by using labeled training dataset. An attribute is
selected for each node based on how it is more informative dtfzers. Leaves are also assigned to
their corresponding class during this process.
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e Classification process: A decision tree is important notibse it summarizes what we know, i.e. the
training set, but because we hope it will classify correntiy cases. Thus when building classifica-
tion models one should have both training data to build theehand test data to verify how well it
actually works. New instances are classified by traverdiegrtee from up to down based on their
attribute values and the node values until one leaf is rehttiat corresponds to the class of the new
instance.

We use the C4.5 algorithm [Qui93] to construct the decisiees where Shanon Entropy is used to
measure how informative is a node. The selection of the k&dtge node is based on the gain ratio
GainRatiqS A) whereSis a set of records anila non categorical attribute. This gain defines the expected
reduction in entropy due to sorting on A. It is calculatedresfollowing [Mit97]:

IS/

Gain(S,A) = Entropy(S) — TS|

veValuegA)

Entropy(S,) (@)

In general, if we are given a probability distributi®= (p1, p2, .., pn) then the information conveyed by
this distribution, which is called the Entropy Bfis :

EntropyP) = le.loggpI 2

If we consider onlyGain(S,A) then an attribute with many values will be automaticallyesétd. One
solution is to usé&ainRatioinstead [Qui86]

: . _ Gain(S,A)
GainRatiqS A) = Splitinformatior{S A) @)
where
Spl 1S, \SI
plitinformatior{S,A) = Z S % g (4)

whereS§ is a subset o8 for which A has a valuey;.

4 Eigenconnection approach

Principal component analysis (PCA) is a mathematical o that transforms a number of (possibly)
correlated variables into a (smaller) number of uncoreglatariables called principal components. The
objective of principal component analysis is to reduce tlmeedsionality (number of variables) of the
dataset but retain most of the original variability in theadal' he first principal component accounts for as
much of the variability in the data as possible, and eacheding component accounts for as much of the
remaining variability as possible. In this section we irigagte the eigenconnection approach based on the
principal component analysis. In our case, each connecgiord corresponds to one vectonofariables
corresponding to the different attributes in the differéatasets. The procedure is the following:

The set o different measures are collected in a vector called coiorentcord vector representing the
corresponding connection. Sdifis a connection vector then we can write

m
117}
r=| (5)
M
wherem;, i = 1,...,n correspond to the different measures. In most cases, theectian vectors are very

similar and they can be described by sdmasic connection vectars
This approach involves the following initialization prehee:
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1. acquire an initial set of connection records (this setited the training set). In this paper, we use
the kdd 99 10% training dataset containMg= 494,021 connection records;

2. calculate the eigenconnections from the training setpikegy onlyn’(n’ << n) eigenconnections that
correspond to the highest eigenvalues. Thésennections define the connection space.

3. calculate the corresponding distributiomin- dimensionat weight space for each known connec-
tion record, by projecting their connection vectors on®dbnnection space

4. (optional) perform a machine learning algorithm (builfiprocess) on the new datasets in the new
connection space; for the decision tree algorithm, it iseseary to build the tree which will be used
in the detection process. However, there is no need to peittoe NN algorithm at this stage. This is
the reason why this step is optional depending on the madéameing algorithm being used.

Having projected the training data onto the new featureesphe following steps are then used to classify
and detect intrusions from the new connection records inetbtedata:

1. calculate a set of weights based on the input connectimrdeand then eigenconnections by pro-
jecting the input connection record vector onto each eigenection,

2. use one of the different machine learning algorithmsgifacation process) to detect intrusions from
the new connection records represented in the new feataoe sp

4.1 Calculating the eigenconnections
Let the training set of connection vectorsibel 2, ..., 'm. The average profil¢ of this set is defined by:

1 M
W=— ST, (6)
w2
Each connection record vectoy differs from the averag®’ by:

O =r-w @)

The eigenconnections are the eigenvectors of the covariaatrixC where

M
C(n n = i ; ol = AAT 8)
X M |: |

1
Anxm) = N

Let Uk be thekth eigenvector o, Ay the associated eigenvalue ddgl]xnl) = [U1U3...Uy] the matrix of
these eigenvectors (eigenconnections). Then

[D1Ds. .. Dy] 9)

CUx = MUy (20)
such that
e [ 1 ifk=1
UkU'—{ 0 ifk#I (11)

The feature vector corresponding to the connection recpisl:
w
T W2
Qi =U"x CDi = . (12)

Wy
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If the length of the connection record vectomignumber of considered attributes), the ma€ixs n x n.
The principal component analysis of the contextual covegamatrixC is obtained by calculating its eigen-
values and eigenvectors, and ordering the eigenvaluesiientbrresponding eigenvectors) in decreasing
order. The sub-space generated by the eigenvectors congisg to the highest eigenvalues has the highest
inertia. By construction, all the directions of the eigertees are orthogonal. The principal components
associated with the smallest eigenvalues often corresjpamat interesting information [Jol02]. Therefore,
they are usually removed. Other strategies can be adopsadetct the components [Jol02].

The quantity given by

lnzl?\i (13)

is called inertia explained by the subspace generated Hyrshe’ (n' << n) eigenvectors of.

In practice, the number of the principal factorial compdserhosen depends on the precision we wish
to reach. In general, we can limit to 2, 3 or 4 considered fpaidactors (axes). The inertia ratio explained
by these axes is

_ SN 14
Zin=1>\i 4

This ratio defines the information rate kept, from the whalagh input data, by the corresponding
eigenvalues.

T

5 Experimental methodology and results

In this section, we will present the different results angeximents obtained when directly applying the two
methods discussed in section 3 on the different KDD 99 cupsgds or with a combination with Principal
Component Analysis; first by projecting all data on the neacspgenerated by the few number PCA's
principal axes then applying the nearest neighbor or detisees algorithm on the datasets but after their
projection on the new reduced PCA's space.

The accuracy of each experiment is based on the percentayeadssful prediction (PSP) on the test
dataset .

number of successful instance classification
PSP= _ _ (15)
number of instances in the test set

5.1 Nearest neighbor with/without PCA

The first experiment, we perform, consists in evaluatingrtbarest neighbor algorithm on the KDD 99
database. The main problem encountered when computingérest neighbor is that it is computationally
expensive to compute the nearest neighbor of each point.coimplexity of this computation i©(nm)
wheren is the number of connection records in the training datasdthain the test dataset. Each dis-
tance computation between two connection records depamndseonumber of space coordinates where
they are represented. Of course, this algorithm may be appaded with a cluster based estimation algo-
rithm [HMO1]. However, the distance between two connectiecords remains dependent on the coordi-
nates number of the feature space. For this reason, we hajeetad the different datasets connections on
the new feature space generated by the principal compowrest &here are 125 coordinates of each con-
nection in KDD 99 after transformation for discrete atttdualues as explained in section 3 (41 attributes
added to the representation of each discrete value that leassatwo coordinates).

Table 2 presents the confusion matrix when applying diyettié nearest neighbor on the feature space
generated by these 125 coordinates.

Using the same algorithm (the nearest neighbor), we havergmpnted the test dataset on a new feature
space generated by at most seven PCA's axes. We have pedftrendifferent experiments by considering
2,3, ..., or7 axes. The results are not much different frooh egher when we consider from 2 to 7 axes.
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Predicted ag Normal | Probing| DOS U2R R2L
Actual
Normal(60593) | 99.50% | 0.26% | 0.24% | 0.00% | 0.00%
Probing(4166) | 17.21% | 72.01% | 10.28% | 0.00% | 0.50%
D0S(229853) 2.87% | 0.12% | 97.01% | 0.00% | 0.00%
U2R(228) 39.96% | 18.80% | 32.01% | 6.60% | 2.63%
R2L(16189) 96.12%| 2.65% | 0.00% | 0.02% | 1.21%

| PSP=92.05% |

Tab. 2: Confusion matrix obtained with the nearest neighbor atgorion 125 coordinates.

Predicted ag Normal | Probing| DOS U2R R2L
Actual
Normal(60593) | 99.50% | 0.27% | 0.23% | 0.00% | 0.00%
Probing(4166) | 13.87% | 74.40% | 11.37% | 0.00% | 0.36%
DOS(229853 2.68% | 0.18% | 97.14% | 0.00% | 0.00%
U2R(228) 35.96% | 14.47% | 39.03% | 7.91% | 2.63%
R2L(16189) 97.49%| 1.71% | 0.00% | 0.00% | 0.80%

| PSP=92.22% |

Tab. 3: Confusion matrix obtained with the nearest neighbor on 4dioates after performing PCA .

Table 3 shows the confusion matrix when we consider four éx@seach connection record in the different
datasets is represented by only four coordinates).

The confusion matrix in table 3 shows that the results af@A Rpplication are slightly better. In ad-
dition, the computation time is reduced by a factor of appraely thirty (~ 125/4) when considering
4 principal components. Hence, it is better to reduce theespa which the connection records are rep-
resented before applying any machine learning algorithhis first experimentation is used to show that
a combination between PCA and the nearest neighbor perfaetiseven if a few axes are considered
(at most seven) to represent the records. According to eouad, the inertia ratio is close to 1 (0.999)
when considering only 4 axes. This is the reason why a reptatsen with only four axes provides a good
prediction rate.

In the two experiments, the two last classes R2L and U2R arev@lbdetected. The maximum PSP for
U2R class is B1% and 121% for R2L.

5.2 Decision trees with/without PCA

This section presents experimental results using dectst@s with the C4.5 algorithm. This latter is ap-
plied, in the first experiment, directly on the differentasets using the whole 41 attributes and then com-
pared to its application on the datasets but after theirggtimjn onto the new space generated by the few
principal component axes number.

During our experiments, we have considered, as in [BBEO), ¢ases. The first consists in grouping
the whole 39 attacks types into four attack categories bdfaining. In the second case, they are gathered
after classification.

5.2.1 Decision trees without PCA

In this section, we present the different results obtainkedmapplying directly the C4.5 algorithm on rough
data. Table 4 evaluates the application of the C4.5 algurih the dataset by gathering the whole attacks
into four categories before the training step and its apfibo on the rough dataset after classification.
The different results obtained in this first experiment shioat gathering the attacks before training or
after classification does not influence the percentage afesséul prediction. The two classes U2R and
R2L are classified with a percentage of successful predicifoat most 5.84%. This is due to the low
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Predicted ag %Normal %Probing %DOS %U2R %R2L
Actual
Normal(60593) | 99.49(99.42)] 0.36(0.39) | 0.12(0.15) | 0.00(0.00)| 0.02(0.03)
Probing(4166) | 21.32(15.75)| 74.70(78.80), 3.98 (5.45) | 0.00(0.00)| 0.00(0.00)
DOS(229853) 2.68(2.58) | 0.00(0.46) | 97.31(96.96) 0.00(0.00)| 0.00(0.00)
U2R(228) 90.79(56.58)| 1.75(28.51)| 0.44(0.88) | 4.39(5.26)| 2.63(8.77)
R2L(16189) 92.03(94.63)| 2.10(0.07) | 0.01(0.00) | 0.02 (0.03)| 5.84(5.27)

PSP=92.60%,(PSP=92.35%)

Tab. 4: Confusion matrix relative to five classes using the C4.5rétlym. The values between parentheses correspond
to gathering the whole attacks results into five categoffies elassification.

number of samples of these two classes in the training $t%0examples of U2R in the training set (resp.
0.23% of R2L) versus 0.07% of U2R (resp. 5.20% of R2L) in tiet dataset and to the new forms of these
two attacks classes that appear in the test dataset whictoapeesent in the training set.

5.2.2 Decision trees with PCA

We now apply the C4.5 on the new feature space generated lpyitiagpal axes. All the training dataset
and the test dataset connection records are projectedlmnteetv feature space. This new feature space is
generated by at most 7 axes in our different experimentslidata the results of combining PCA with the
C4.5 decision trees algorithm.

Predicted ag %Normal %Probing %DOS %U2R %R2L
Actual
Normal(60593) | 99.00(98.99) 0.85(0.84) | 0.12(0.12) | 0.00(0.00)| 0.03(0.04)
Probing(4166) | 29.60(30.20) 66.80(66.30)| 3.50(3.50) | 0.10(0.00)| 0.00(0.00)
DOS(229853) 2.42(2.42) | 0.33(0.33) | 97.25(97.25)| 0.00 (0.00)| 0.00 (0.00)
U2R(228) 92.98(91.23)| 0.00(0.00) | 0.44(0.00) | 6.58(8.33)| 0.00(0.44)
R2L(16189) 99.94(97.69) 0.00(0.00) | 0.06(0.01) | 0.00(0.00)| 0.01(2.30)

PSP=92.05%(PSP=92.16%)

Tab. 5: Confusion matrix relative to five classes using the C4.5ritlym after dataset projection onto two principal
component axes. The values between parentheses corraspgattiering the whole attacks results into five categories
after classification.

According to tables 5 and§ there is a slight difference between the use of decisi@stoam rough data
and their combination with PCA on the new feature space. Mewét is important to mention that the
number of nodes in the decision tree generated when we app% @ rough data is greater than that of
nodes in the decision tree when applied with the differetdsits but in the new feature space generated
by the PCA. In addition, the training time consumed to cardtthe decision tree with the new data in the
feature space, generated by at memtenprincipal components, is more interesting as presentedalhile t
6. Furthermore, the problem of the prediction ratio with lgns two classes persists always as mentioned

Decision trees without PCA

Decision trees with PCA

Number of nodeg

~ 1500 before pruning
~ 700 after pruning

~ 330 before pruning
~ 211 after pruning

Training time

~ 3mm0sec

~ 50sec

Tab. 6: Time and tree size with/without PCA.

T pca corresponds to the projection of the data onto theifipsincipal axes corresponding to the firstighest eigenvalues.
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in the previous subsection. The highest predicted suadesgfo obtained with the R2L class does not
exceed 2.30%. This is because the principal componentsiatesw with the smallest eigenvalues often
correspond to not interesting information [Jol02] thatresponds in reality in our case to the classes that
are not present with high rates in the training set and wesirg into account only the highest eigenvalues.
This is the reason why the R2L class prediction ratio is vemgls To circumvent this problem, we have
considered other axes corresponding to lower principat.akethis case, we have obtained 5.86% as the
highest prediction ratio for the R2L class. Table 7 prestr@dest prediction ratios when considering other
components axes not presented in tables 5 and 8.

Attack Category| Normal(60593)| Probing(4166)] DOS(229853)| U2R(228)| R2L(16189)
Detection Ratio 99.52% 78.84% 98.26% 12.72% 5.86%

| PSP=92.63% |

Tab. 7: The best prediction ratios obtained for each class whenaenisg different principal components.

According to table 7, the results obtained by combining sleaitrees with PCA are slightly better than
those in table 4 when applying directly decision trees omghodata.

We may improve the prediction ratio, when combining decigiees with PCA, of the last two classes
by duplicating their different samples in the training $y.this reasonning, they will not be considered as
less interesting information.

6 Conclusion

We have presented in this paper a new idea on how to reduceftbeedt representation spaces before
applying some machine learning algorithms on the diffekdd 99 intrusion detection datasets. This new
representation permits to improve the learning time andespapresentation of the different datasets with
a similar successful prediction in the whole experiments.

The main drawback which persists in combining decisionstiaethe nearest neighbor with PCA is the
poor prediction ratio rate of the R2L class which is in mosthaf time classified as normal. This is due
to its low presence in the training dataset (0.23%). We mayrave this ratio by boosting the number of
samples of this class in the training dataset before applyia PCA algorithm in order to transform it into
an interesting information class represented by a prihcgraponent corresponding to a higher eigenvalue.

However, the new attacks types that are present in the twolsses, R2L and U2R, in the test data set
could not be detected by machine learning algorithms [SS#ik suggests to perform other unsupervised
machine learning or data mining algorithms to deal with ¢hesw attacks that should be detected as new
attacks. Hence, we may add a new class that we call new atthgssto which new attacks, which are not
looking similar to the known attacks in the training dataséll be classified. This will be discussed in a
forthcoming paper.
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Predicted as| %Normal %Probing %DOS %U2R %R2L
Actual Components
PCA3 99.47(99.52)| 0.35(0.32) | 0.13(0.12) | 0.00(0.00) | 0.05(0.04)
PCA4 99.43(99.51)| 0.36(0.34) | 0.13(0.12) | 0.01(0.01) | 0.07(0.02)
Normal | PCA5 99.23(99.19), 0.39(0.37) | 0.22(0.27) | 0.00(0.16) | 0.15(0.02)
(60593) | PCAG6 99.46(99.47), 0.36(0.34) | 0.16(0.15) | 0.00(0.02) | 0.02(0.02)
PCA7 99.39(99.47)| 0.35(0.14) | 0.24(0.02) | 0.00(0.06) | 0.02(0.36)
PCA3 28.88(30.63)| 67.67(62.12)| 3.36(7.25) | 0.10(0.00) | 0.00(0.00)
PCA4 24.20(30.56)| 69.40(63.08)| 6.39(6.34) | 0.00(0.00) | 0.02(0.02)
Probing | PCA5 13.85(16.30) 76.26(73.09)] 8.93(10.30) | 0.00(0.29) | 0.96(0.02)
(4166) PCA6 18.31(22.56)| 76.48(69.40) 5.21(8.02) | 0.00(0.02) | 0.00(0.00)
PCA7 14.98(22.71) 75.76(69.28) 9.27(8.02) | 0.00(0.00) | 0.00(0.00)
PCA3 2.60(2.75) | 0.20(0.00) | 97.18(97.25)| 0.00(0.00) | 0.02(0.00)
PCA4 2.53(2.76) | 0.27(0.05) | 97.17(97.17), 0.00(0.00) | 0.02(0.02)
DOS PCA5 2.70(2.69) | 0.02(0.06) | 97.26(97.16), 0.00(0.00) | 0.02(0.09)
(229853)| PCA6 2.76(2.77) | 0.02(0.03) | 97.20(97.06), 0.00(0.00) | 0.02(0.14)
PCA7 2.71(2.75) | 0.04(0.03) | 97.22(97.06)| 0.00(0.00) | 0.02(0.16)
PCA3 85.09(65.35)| 1.75(9.65) | 0.44(14.91)| 12.72(8.33)| 0.00(1.75)
PCA4 68.86(77.63)] 9.65(5.70) | 9.65(9.65) | 5.26(6.58) | 6.58(0.44)
U2R PCA5 35.53(62.28)| 47.37(19.74) 11.40(13.60) 4.39(3.95) | 1.32(0.44)
(228) PCAG6 38.16(41.23) 47.37(3.51)| 7.46(48.25)| 5.70(4.39) | 1.32(2.63)
PCA7 38.16(41.23) 47.37(3.51)| 7.46(48.25)| 5.70(4.39) | 1.32(2.63)
PCA3 99.60(99.60)| 0.02(0.02) | 0.02(0.02) | 0.01(0.01) | 0.35(0.35)
PCA4 99.83(99.81) 0.03(0.01) | 0.03(0.03) | 0.01(0.02) | 0.11(0.12)
R2L PCAS5 99.81(99.38), 0.02(0.14) | 0.04(0.04) | 0.03(0.04) | 0.10(0.41)
(16189) | PCA6 99.82(99.43), 0.02(0.14) | 0.03(0.02) | 0.04(0.05) | 0.09(0.36)
PCA7 99.81(99.42)| 0.02(0.14) | 0.02(0.02) | 0.06(0.06) | 0.09(0.36)
PSP3=92.12%(PSP3=92.11%),PSP4=92.12%(PSP4=92.05%)
PSP5=92.23%(PSP5=92.13%),PSP6=92.24%(PSP6=92.06%)
PSP7=92.23%(PSP7=92.05%)

Tab. 8: Confusion matrix relative to five classes using the C4.5ritlgm after dataset projection onto 3,4,5,6 or 7
principal component axes. The values between parenthesespgond to gathering the whole attacks results into five
categories after classification.



