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Most current intrusion detection systems are signature based ones or machine learning based methods. Despite the
number of machine learning algorithms applied to KDD 99 cup,none of them have introduced a pre-model to reduce the
huge information quantity present in the different KDD 99 datasets. We introduce a method that applies to the different
datasets before performing any of the different machine learning algorithms applied to KDD 99 intrusion detection
cup. This method enables us to significantly reduce the information quantity in the different datasets without loss of
information. Our method is based on Principal Component Analysis (PCA). It works by projecting data elements onto
a feature space, which is actually a vector spaceRd, that spans the significant variations among known data elements.
We present two well known algorithms we deal with, decision trees and nearest neighbor, and we show the contribution
of our approach to alleviate the decision process. We rely onsome experiments we perform over network records from
the KDD 99 dataset, first by a direct application of these two algorithms on the rough data, second after projection of
the different datasets on the new feature space.

Mots-clés: Intrusion Detection, Principal Component Analysis, KDD 99, Decision Trees, Nearest Neighbor.

1 Introduction
A modern computer network should acquire many mechanisms toensure the security policy of data and
equipment inside the network. Intrusion detection systems(IDSs) are an integral package in any well
configured and managed computer system or network. IDSs may be some software or hardware systems
that monitor the different events occuring in the actual network and analyze them for signs of security
threats.

There are two major approaches in intrusion detection: anomaly detection and misuse detection. Misuse
detection consists of first recording and representing the specific patterns of intrusions that exploit known
system vulnerabilities or violate system security policies, then monitoring current applications or network
traffic activities for such patterns, and reporting the matches. There are several developed models in misuse
intrusion detection [Ilg93, KS94]. They differ in representation as well as the matching algorithms em-
ployed to detect such threat patterns. Anomaly detection, on the other hand, consists of building models
from normal data and then detect variations from the normal model in the observed data. Anomaly detection
was originally introduced by Anderson [And80] and Denning [Den87]. The main advantage with anomaly
intrusion algorithms is that they can detect new forms of attacks, because these new intrusions will probably
deviate from the normal behavior [Den87].

There are many IDSs developed during the past three decades.However, most of the commercial and
freeware IDS tools are signature based [Roe99]. Such tools can only detect known attacks previously de-
scribed by their corresponding signatures. The signature database should be maintained and updated peri-
odically and manually for new attacks. For this reason, manydata mining and machine learning algorithms
are developed to discover new attacks that are not describedin the training labeled data.
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Literature survey on intrusion detection indicates that most researchers applied an algorithm directly
[AJ00, Lev00, Pfa00] on the rough data obtained from networktraffic or other local or remote applications.
The majority of the machine learning algorithms applied to anomaly intrusion detection suffers from the
high consuming time [Pfa00] when applied directly on rough data. The KDD 99 cup intrusion detection
datasets [KDD99a] are an example where many machine learning algorithms, mostly inductive learning
based, were applied directly on the data which is a binary TCPdump data processed into connection records.
Each connection record corresponds to a normal connection or to a specified attack as described in section
2.

Much of the previous work on anomaly intrusion detection in general and on the KDD 99 cup datasets
in particular ignored the issue of just what measures of the user, application and/or network traffic behavior
stimulus are important for intrusion detection. This suggested to us that an information theory approach
coding and decoding user/application or connection recordbehaviors may give new information content of
user/attack behaviors, emphasizing the significant local or global ”features”. These features may or may
not be directly related to the actual used metrics or attributes such as CPU consumed time, number of web
pages visited during a session in the case of user behaviors and such as the used protocol, service in the
case of network connection records. In the remaining of thispaper, we will be just interested in network
connection records (for more details on profiles’ behaviors, see [BG03]).

In the language of information theory, we want to extract therelevant information in a network connection
record, encode it efficiently, and compare one network connection record encoding with a database of
network connection records encoded similarly. A simple approach to extract the information contained in
a network connection record is to capture the variation in a collection of connection records, independently
of any judgement of feature, and use this information to encode and compare network connection records.

In mathematical terms, we wish to find the principal components of the distribution of the connection
records, or the eigenvectors of the covariance matrix of theset of the connection records [Jol02]. These
eigenvectors can be thought of as a set of features which together characterize the variation between records
connections. Each connection record location contributesmore or less to each eigenvector which we call
”eigenconnection”. Each connection record can be presented exactly in terms oflinear combination of
the eigenconnections. Each connection can also be approximated using only the best-”eigenconnections”-
those that have the largest eigenvalues, and which therefore account for the most variance within the set
of connection records. The bestN eigenconnections span anN dimensional subconnection-”connection
space”-of all possible connection records.

This new space is generated by an information theory method called Principal Component Analysis
(PCA) [Jol02]. This method has proven to be an exceedingly popular technique for dimensionality reduction
and is discussed at length in most texts on multivariate analysis. Its many application areas include data
compression [KS90], image analysis, visualization, pattern recognition [TP91] and time series prediction.

The most common definition of PCA, due to Hotelling (1933) [Hot33], is that, for a set of observed
vectorsfvig; i 2 f1; : : : ;Ng, the q principal axesfwjg; j 2 f1; : : : ;qg are those orthonormal axes onto
which the retained variance under projection is maximal. Itcan be shown that the vectorswj are given
by theq dominent eigenvectors (i.e. those with largest associatedeigenvalues) of the covariance matrix

C = ∑i
(vi�v)(vi�v)T

N such thatCwj = λiwj , wherev is the simple mean. The vectorui = WT(vi �v), where
W = (w1;w2; : : : ;wq), is thus aq-dimensionalreduced representation of the observed vectorvi .

We investigate, in this paper, an eigenconnection approachbased on principal component analysis for
anomaly intrusion detection applied to the different KDD 99intrusion detection cup datasets.

This paper is organized as follows: Section 2 describes the different KDD 99 intrusion detection cup
datasets. Sections 3 and 5 introduce the application of two algorithms; the nearest neighbor and decision
trees, where in section 3 these algorithms are briefly presented and in section 5, we present and discuss
the different results obtained by using these two algorithms on rough data or after reduction of the feature
space using PCA. Section 4 provides the eigenconnection approach for dimensionnality reduction of data.
Finally, section 6 concludes the paper.
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2 Description of KDD 99 intrusion detection datasets
The main task for the KDD 99 classifier learning contest [KDD99b] was to provide a predective model
able to distinguish between legitimate (normal) and illegitimate (called intrusion or attacks) connections
in a computer network. The training dataset contained about5,000,000 connection records, and the train-
ing 10% dataset consisted of 494,021 records among which there were 97,278 normal connections (i.e.
19.69%). Each connection record consists of 41 different attributes that describe the different features of
the corresponding connection, and the value of the connection is labeled either as an attack with one specific
attack type, or as normal. The 39 different attack types present in the 10% datasets are given in table 1.

Each attack type falls exactly into one of the following fourcategories:

1. Probing: surveillance and other probing, e.g., port scanning;

2. DOS: denial-of-service, e.g. syn flooding;

3. U2R: unauthorized access to local superuser (root) privileges, e.g., various”buffer overflow” attacks;

4. R2L: unauthorized access from a remote machine, e.g. password guessing.

The task was to predict the value of each connection (normal or one of the above attack categories) for
each of the connection record of the test dataset containing311,029 connections. It is important to note
that:

1. the test data is not from the same probability distribution as the training data;

2. the test data includes some specific attack types not in thetraining data. There are 22 different attacks
types out of 39 present in the training dataset. The remaining attacks are present in the test dataset
with different rates towards their corresponding categories. There are 4 new U2R attack types in
the test dataset that are not present in the training dataset. These new attacks correspond to 92:90%
(189/228) of the U2R class in the test dataset. On the other hand, there are 7 new R2L attack types
corresponding to 63% (10196/16189) of the R2L class in the test dataset. In addition, there are only
104 (out of 1126) connection records present in the trainingdataset corresponding to the known R2L
attacks present simultaneously in the two datasets. However, there are 4 new DOS attack types in
the test dataset corresponding to 2:85%(6555/229853) of the DOS class in the test dataset and 2 new
Probing attacks corresponding to 42.94% (1789/4166) of theProbing class in the test dataset.

Probing DOS U2R R2L
ipsweep, mscan, apache2, back, buffer overflow ftp write, guesspasswd, imap,
nmap, portsweep, land, mailbomb, httptunnel, loadmodule multihop, named, phf, send-
saint, satan. neptune, pod, perl, ps, mail, snmpgetattack, snmpguess,

processtable, smurf, rootkit, sqlattack, spy, warezclient, warezmaster,
teardrop, udpstorm. xterm. worm, xlock, xsnoop.

Tab. 1: The different attack types.

We ran our experiments using two different machine learningalgorithms; the nearest neighbor and de-
cision trees, on the 10 % KDD 99 intrusion detection cup [KDD99a] generated by the MIT Lincoln Lab-
oratory. Lincoln Labs set up an environment to acquire nine weeks of raw TCPdump data for a local-area
network (LAN) simulating a typical U.S. Air Force LAN. They operated the LAN as if it were a true Air
Force environment, but peppered it with the 39 different attacks types. The TCPdump data collected from
the network traffic was transformed into connection recordsusing some data mining techniques [LSM99].
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3 Nearest neighbor and decision trees

3.1 Nearest Neighbor NN

One of the easiest method in machine learning field is the nearest neighbor method orNN. It consists
of classifying new observations into their appropriate categories by a simple comparison with the known
well classified observations. Recall that the only knowledge we have is a set ofxi; i=1;::;M points correctly
classified into categories. It is reasonable to assume that observations which are close together -for some
appropriate metric- will have the same classification. Thus, when classifying an unknown samplex, it seems
appropriate to weight the evidence of the nearby’s heavily.One simple non-parametric decision procedure
of this form is the nearest neighbor rule orNN-rule. This rule classifiesx in the category of its nearest
neighbor. More precisely, we callx0 a nearest neighbor tox if min d(x;xi) = x0;where i= 1; ::;M andd is
the distance between the two considered points such as the Euclidean distance.

After its first introduction by Fix and Hodges [FH51], theNN classifier has been used and improved
by many researchers [Bay98, Das91] and employed on many datasets from UCI repository [HB99]. A
common extension is to choose the most common class in thekNN. The kNN is performed on KDD 99
intrusion detection datasets by Eskin et. al [EAP+03]. It was applied for another purpose where the dataset
is filtered and the percentage of attacks is reduced to 1:5% in order to perform unsupervised anomaly
detection. In the following, we are interested in applying theNN classifier on the different datasets with
its simplest form. That is compute all possible distance pairs between all the training data set and the test
dataset records.

Since our datasets consist of continuous and discrete attributes values, we have converted the discrete
attibutes values to continuous values following the following idea. Consider we haveΣi possible values for
a discrete attributei. For each discrete attribute correpondj Σi j coordinates. There is one coordinate for
every possible value of the attribute. Then, the coordinatecorresponding to the attribute value has a value
of 1 and all other remaining coordinates corresponding to the considered attribute have a value of 0. As an
example, if we consider the protocol type attribute which can take one of the following discrete attributes
tcp, udp or icmp. Then, there will be three coordinates for this attribute. If the connection record has a
tcp (resp. udp or icmp) as a protocol type then the corresponding coordinates will be

�
1 0 0

�
(resp.�

0 1 0
�

or
�

0 0 1
�

). With this transformation, each connection record in the different KDD 99
datasets will be represented by 125 (3 different values for theprotocol type, 11 different values for theflag
attribute, 67 possible values for theservice attributeand 0 or 1 for the other remaining 6 discrete attributes)
coordinates instead of 41 according to the above discrete attributes values transformation.

3.2 Decision trees

Decision tree induction has been studied in details in both areas of pattern recognition and machine learn-
ing. In the vast area concerning decision trees, also known as classification trees or hierarchical classi-
fiers, at least two seminal works are to be mentioned, those byQuinlan [Qui86] and those by Breiman
et al. [BFOS84]. The former synthesizes the experience gained by people working in the area of ma-
chine learning and describes a computer program called ID3,which has evolved in a new system, named
C4.5 [Qui93]. The latter originated in the field of statistical pattern recognition and describes a system,
named CART (Classification And Regression Trees), which hasmainly been applied to medical diagnosis.
A decision tree is a tree that has three main components: nodes, arcs, and leaves. Each node is labeled with
a feature attribute which is most informative among the attributes not yet considered in the path from the
root, each arc out of a node is labeled with a feature value forthe node’s feature and each leaf is labeled
with a category or class.

Most of the decision trees algorithms use a top down strategy; i.e from the root to the leaves. Two main
processes are necessary to use the decision trees:� Building process: it consists of building the tree by using the labeled training dataset. An attribute is

selected for each node based on how it is more informative than others. Leaves are also assigned to
their corresponding class during this process.
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training set, but because we hope it will classify correctlynew cases. Thus when building classifica-
tion models one should have both training data to build the model and test data to verify how well it
actually works. New instances are classified by traversing the tree from up to down based on their
attribute values and the node values until one leaf is reached that corresponds to the class of the new
instance.

We use the C4.5 algorithm [Qui93] to construct the decision trees where Shanon Entropy is used to
measure how informative is a node. The selection of the best attribute node is based on the gain ratio
GainRatio(S;A) whereS is a set of records andA a non categorical attribute. This gain defines the expected
reduction in entropy due to sorting on A. It is calculated as the following [Mit97]:

Gain(S;A) = Entropy(S)� ∑
v2Values(A) j Sv jj Sj Entropy(Sv) (1)

In general, if we are given a probability distributionP = (p1; p2; ::; pn) then the information conveyed by
this distribution, which is called the Entropy ofP is :

Entropy(P) =� n

∑
i=1

pi log2pi (2)

If we consider onlyGain(S;A) then an attribute with many values will be automatically selected. One
solution is to useGainRatioinstead [Qui86]

GainRatio(S;A) = Gain(S;A)
SplitIn f ormation(S;A) (3)

where

SplitIn f ormation(S;A) =� c

∑
i=1

j Si jj Sj log2
j Si jj Sj (4)

whereSi is a subset ofS for whichA has a valuevi .

4 Eigenconnection approach
Principal component analysis (PCA) is a mathematical procedure that transforms a number of (possibly)
correlated variables into a (smaller) number of uncorrelated variables called principal components. The
objective of principal component analysis is to reduce the dimensionality (number of variables) of the
dataset but retain most of the original variability in the data. The first principal component accounts for as
much of the variability in the data as possible, and each succeeding component accounts for as much of the
remaining variability as possible. In this section we investigate the eigenconnection approach based on the
principal component analysis. In our case, each connectionrecord corresponds to one vector ofn variables
corresponding to the different attributes in the differentdatasets. The procedure is the following:

The set ofn different measures are collected in a vector called connection record vector representing the
corresponding connection. So ifΓ is a connection vector then we can write

Γ =0BBB� m1

m2
...

mn

1CCCA (5)

wheremi ; i = 1; : : : ;n correspond to the different measures. In most cases, the connection vectors are very
similar and they can be described by somebasic connection vectors.

This approach involves the following initialization procedure:
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1. acquire an initial set of connection records (this set is called the training set). In this paper, we use
the kdd 99 10% training dataset containingM = 494;021 connection records;

2. calculate the eigenconnections from the training set, keeping onlyn0(n0 << n) eigenconnections that
correspond to the highest eigenvalues. Thesen0 connections define the connection space.

3. calculate the corresponding distribution inn0�dimensional� weight space for each known connec-
tion record, by projecting their connection vectors onto theconnection space;

4. (optional) perform a machine learning algorithm (building process) on the new datasets in the new
connection space; for the decision tree algorithm, it is necessary to build the tree which will be used
in the detection process. However, there is no need to perform the NN algorithm at this stage. This is
the reason why this step is optional depending on the machinelearning algorithm being used.

Having projected the training data onto the new feature space, the following steps are then used to classify
and detect intrusions from the new connection records in thetest data:

1. calculate a set of weights based on the input connection record and then0 eigenconnections by pro-
jecting the input connection record vector onto each eigenconnection,

2. use one of the different machine learning algorithms(classification process) to detect intrusions from
the new connection records represented in the new feature space.

4.1 Calculating the eigenconnections
Let the training set of connection vectors beΓ1;Γ2; : : : ;ΓM. The average profileΨ of this set is defined by:

Ψ = 1
M

M

∑
i=1

Γi (6)

Each connection record vectorΓi differs from the averageΨ by:

Φi = Γi �Ψ (7)

The eigenconnections are the eigenvectors of the covariance matrixC where

C(n�n) = 1
M

M

∑
i=1

ΦiΦT
i = AAT (8)

A(n�M) = 1p
M

[Φ1Φ2 : : :ΦM℄ (9)

Let Uk be thekth eigenvector ofC, λk the associated eigenvalue andU(n�n0) = [U1U2 : : :Un0 ℄ the matrix of
these eigenvectors (eigenconnections). Then

CUk = λkUk (10)

such that

UT
k Ul =� 1 if k= l

0 if k 6= l
(11)

The feature vector corresponding to the connection recordΓi is :

Ωi =UT �Φi =0BBB� ω1

ω2
...

ωn0 1CCCA (12)
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If the length of the connection record vector isn (number of considered attributes), the matrixC is n�n.
The principal component analysis of the contextual covariance matrixC is obtained by calculating its eigen-
values and eigenvectors, and ordering the eigenvalues (andthe corresponding eigenvectors) in decreasing
order. The sub-space generated by the eigenvectors corresponding to the highest eigenvalues has the highest
inertia. By construction, all the directions of the eigenvectors are orthogonal. The principal components
associated with the smallest eigenvalues often correspondto not interesting information [Jol02]. Therefore,
they are usually removed. Other strategies can be adopted toselect the components [Jol02].

The quantity given by

n0
∑
i=1

λi (13)

is called inertia explained by the subspace generated by thefirst n0 (n0 << n) eigenvectors ofC.
In practice, the number of the principal factorial components chosen depends on the precision we wish

to reach. In general, we can limit to 2, 3 or 4 considered principal factors (axes). The inertia ratio explained
by these axes is

τ = ∑n0
i=1 λi

∑n
i=1 λi

(14)

This ratio defines the information rate kept, from the whole rough input data, by the correspondingn0
eigenvalues.

5 Experimental methodology and results
In this section, we will present the different results and experiments obtained when directly applying the two
methods discussed in section 3 on the different KDD 99 cup datasets or with a combination with Principal
Component Analysis; first by projecting all data on the new space generated by the few number PCA’s
principal axes then applying the nearest neighbor or decision trees algorithm on the datasets but after their
projection on the new reduced PCA’s space.

The accuracy of each experiment is based on the percentage ofsuccessful prediction (PSP) on the test
dataset .

PSP= number o f success f ul instance classi f ication
number o f instances in the test set

(15)

5.1 Nearest neighbor with/without PCA

The first experiment, we perform, consists in evaluating thenearest neighbor algorithm on the KDD 99
database. The main problem encountered when computing the nearest neighbor is that it is computationally
expensive to compute the nearest neighbor of each point. Thecomplexity of this computation isO(nm)
wheren is the number of connection records in the training dataset and m in the test dataset. Each dis-
tance computation between two connection records depends on the number of space coordinates where
they are represented. Of course, this algorithm may be approximated with a cluster based estimation algo-
rithm [HM01]. However, the distance between two connectionrecords remains dependent on the coordi-
nates number of the feature space. For this reason, we have projected the different datasets connections on
the new feature space generated by the principal component axes. There are 125 coordinates of each con-
nection in KDD 99 after transformation for discrete attribute values as explained in section 3 (41 attributes
added to the representation of each discrete value that has at least two coordinates).

Table 2 presents the confusion matrix when applying directly the nearest neighbor on the feature space
generated by these 125 coordinates.

Using the same algorithm (the nearest neighbor), we have experimented the test dataset on a new feature
space generated by at most seven PCA’s axes. We have performed the different experiments by considering
2, 3, ..., or 7 axes. The results are not much different from each other when we consider from 2 to 7 axes.
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Predicted as Normal Probing DOS U2R R2L
Actual
Normal(60593) 99.50% 0.26% 0.24% 0.00% 0.00%
Probing(4166) 17.21% 72.01% 10.28% 0.00% 0.50%
DOS(229853) 2.87% 0.12% 97.01% 0.00% 0.00%
U2R(228) 39.96% 18.80% 32.01% 6.60% 2.63%
R2L(16189) 96.12% 2.65% 0.00% 0.02% 1.21%

PSP=92.05%

Tab. 2: Confusion matrix obtained with the nearest neighbor algorithm on 125 coordinates.

Predicted as Normal Probing DOS U2R R2L
Actual
Normal(60593) 99.50% 0.27% 0.23% 0.00% 0.00%
Probing(4166) 13.87% 74.40% 11.37% 0.00% 0.36%
DOS(229853 2.68% 0.18% 97.14% 0.00% 0.00%
U2R(228) 35.96% 14.47% 39.03% 7.91% 2.63%
R2L(16189) 97.49% 1.71% 0.00% 0.00% 0.80%

PSP=92.22%

Tab. 3: Confusion matrix obtained with the nearest neighbor on 4 coordinates after performing PCA .

Table 3 shows the confusion matrix when we consider four axes(i.e. each connection record in the different
datasets is represented by only four coordinates).

The confusion matrix in table 3 shows that the results after PCA application are slightly better. In ad-
dition, the computation time is reduced by a factor of approximately thirty (� 125=4) when considering
4 principal components. Hence, it is better to reduce the space on which the connection records are rep-
resented before applying any machine learning algorithm. This first experimentation is used to show that
a combination between PCA and the nearest neighbor performswell even if a few axes are considered
(at most seven) to represent the records. According to equation 14, the inertia ratio is close to 1 (0.999)
when considering only 4 axes. This is the reason why a representation with only four axes provides a good
prediction rate.

In the two experiments, the two last classes R2L and U2R are not well detected. The maximum PSP for
U2R class is 7:91% and 1:21% for R2L.

5.2 Decision trees with/without PCA
This section presents experimental results using decisiontrees with the C4.5 algorithm. This latter is ap-
plied, in the first experiment, directly on the different datasets using the whole 41 attributes and then com-
pared to its application on the datasets but after their projection onto the new space generated by the few
principal component axes number.

During our experiments, we have considered, as in [BBE04], two cases. The first consists in grouping
the whole 39 attacks types into four attack categories before training. In the second case, they are gathered
after classification.

5.2.1 Decision trees without PCA
In this section, we present the different results obtained when applying directly the C4.5 algorithm on rough
data. Table 4 evaluates the application of the C4.5 algorithm on the dataset by gathering the whole attacks
into four categories before the training step and its application on the rough dataset after classification.

The different results obtained in this first experiment showthat gathering the attacks before training or
after classification does not influence the percentage of successful prediction. The two classes U2R and
R2L are classified with a percentage of successful prediction of at most 5.84%. This is due to the low
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Predicted as %Normal %Probing %DOS %U2R %R2L
Actual
Normal(60593) 99.49(99.42) 0.36(0.39) 0.12(0.15) 0.00(0.00) 0.02(0.03)
Probing(4166) 21.32(15.75) 74.70(78.80) 3.98 (5.45) 0.00(0.00) 0.00(0.00)
DOS(229853) 2.68(2.58) 0.00(0.46) 97.31(96.96) 0.00(0.00) 0.00(0.00)
U2R(228) 90.79(56.58) 1.75(28.51) 0.44(0.88) 4.39(5.26) 2.63(8.77)
R2L(16189) 92.03(94.63) 2.10(0.07) 0.01(0.00) 0.02 (0.03) 5.84(5.27)

PSP=92.60%,(PSP=92.35%)

Tab. 4: Confusion matrix relative to five classes using the C4.5 algorithm. The values between parentheses correspond
to gathering the whole attacks results into five categories after classification.

number of samples of these two classes in the training set; 0.01% examples of U2R in the training set (resp.
0.23% of R2L) versus 0.07% of U2R (resp. 5.20% of R2L) in the test dataset and to the new forms of these
two attacks classes that appear in the test dataset which arenot present in the training set.

5.2.2 Decision trees with PCA

We now apply the C4.5 on the new feature space generated by theprincipal axes. All the training dataset
and the test dataset connection records are projected onto the new feature space. This new feature space is
generated by at most 7 axes in our different experiments to validate the results of combining PCA with the
C4.5 decision trees algorithm.

Predicted as %Normal %Probing %DOS %U2R %R2L
Actual
Normal(60593) 99.00(98.99) 0.85(0.84) 0.12(0.12) 0.00(0.00) 0.03(0.04)
Probing(4166) 29.60(30.20) 66.80(66.30) 3.50(3.50) 0.10(0.00) 0.00(0.00)
DOS(229853) 2.42(2.42) 0.33 (0.33) 97.25(97.25) 0.00 (0.00) 0.00 (0.00)
U2R(228) 92.98(91.23) 0.00(0.00) 0.44(0.00) 6.58(8.33) 0.00(0.44)
R2L(16189) 99.94(97.69) 0.00(0.00) 0.06(0.01) 0.00(0.00) 0.01(2.30)

PSP=92.05%(PSP=92.16%)

Tab. 5: Confusion matrix relative to five classes using the C4.5 algorithm after dataset projection onto two principal
component axes. The values between parentheses correspondto gathering the whole attacks results into five categories
after classification.

According to tables 5 and 8†, there is a slight difference between the use of decision trees on rough data
and their combination with PCA on the new feature space. However, it is important to mention that the
number of nodes in the decision tree generated when we apply C4.5 on rough data is greater than that of
nodes in the decision tree when applied with the different datasets but in the new feature space generated
by the PCA. In addition, the training time consumed to construct the decision tree with the new data in the
feature space, generated by at mostsevenprincipal components, is more interesting as presented in table
6. Furthermore, the problem of the prediction ratio with thelast two classes persists always as mentioned

Decision trees without PCA Decision trees with PCA
Number of nodes � 1500 before pruning � 330 before pruning� 700 after pruning � 211 after pruning
Training time � 3mn40sec � 50sec

Tab. 6: Time and tree size with/without PCA.

† PCAi corresponds to the projection of the data onto the firsti principal axes corresponding to the firsti highest eigenvalues.
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in the previous subsection. The highest predicted successful ratio obtained with the R2L class does not
exceed 2.30%. This is because the principal components associated with the smallest eigenvalues often
correspond to not interesting information [Jol02] that corresponds in reality in our case to the classes that
are not present with high rates in the training set and we are taking into account only the highest eigenvalues.
This is the reason why the R2L class prediction ratio is very small. To circumvent this problem, we have
considered other axes corresponding to lower principal axes. In this case, we have obtained 5.86% as the
highest prediction ratio for the R2L class. Table 7 presentsthe best prediction ratios when considering other
components axes not presented in tables 5 and 8.

Attack Category Normal(60593) Probing(4166) DOS(229853) U2R(228) R2L(16189)
Detection Ratio 99.52% 78.84% 98.26% 12.72% 5.86%

PSP=92.63%

Tab. 7: The best prediction ratios obtained for each class when considering different principal components.

According to table 7, the results obtained by combining decision trees with PCA are slightly better than
those in table 4 when applying directly decision trees on rough data.

We may improve the prediction ratio, when combining decision trees with PCA, of the last two classes
by duplicating their different samples in the training set.By this reasonning, they will not be considered as
less interesting information.

6 Conclusion
We have presented in this paper a new idea on how to reduce the different representation spaces before
applying some machine learning algorithms on the differentKDD 99 intrusion detection datasets. This new
representation permits to improve the learning time and space representation of the different datasets with
a similar successful prediction in the whole experiments.

The main drawback which persists in combining decision trees or the nearest neighbor with PCA is the
poor prediction ratio rate of the R2L class which is in most ofthe time classified as normal. This is due
to its low presence in the training dataset (0.23%). We may improve this ratio by boosting the number of
samples of this class in the training dataset before applying the PCA algorithm in order to transform it into
an interesting information class represented by a principal component corresponding to a higher eigenvalue.

However, the new attacks types that are present in the two last classes, R2L and U2R, in the test data set
could not be detected by machine learning algorithms [SS04]. This suggests to perform other unsupervised
machine learning or data mining algorithms to deal with these new attacks that should be detected as new
attacks. Hence, we may add a new class that we call new attacksclass to which new attacks, which are not
looking similar to the known attacks in the training dataset, will be classified. This will be discussed in a
forthcoming paper.
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Predicted as %Normal %Probing %DOS %U2R %R2L
Actual Components

PCA3 99.47(99.52) 0.35(0.32) 0.13(0.12) 0.00(0.00) 0.05(0.04)
PCA4 99.43(99.51) 0.36(0.34) 0.13(0.12) 0.01(0.01) 0.07(0.02)

Normal PCA5 99.23(99.19) 0.39(0.37) 0.22(0.27) 0.00(0.16) 0.15(0.02)
(60593) PCA6 99.46(99.47) 0.36(0.34) 0.16(0.15) 0.00(0.02) 0.02(0.02)

PCA7 99.39(99.47) 0.35(0.14) 0.24(0.02) 0.00(0.06) 0.02(0.36)
PCA3 28.88(30.63) 67.67(62.12) 3.36(7.25) 0.10(0.00) 0.00(0.00)
PCA4 24.20(30.56) 69.40(63.08) 6.39(6.34) 0.00(0.00) 0.02(0.02)

Probing PCA5 13.85(16.30) 76.26(73.09) 8.93(10.30) 0.00(0.29) 0.96(0.02)
(4166) PCA6 18.31(22.56) 76.48(69.40) 5.21(8.02) 0.00(0.02) 0.00(0.00)

PCA7 14.98(22.71) 75.76(69.28) 9.27(8.02) 0.00(0.00) 0.00(0.00)
PCA3 2.60(2.75) 0.20(0.00) 97.18(97.25) 0.00(0.00) 0.02(0.00)
PCA4 2.53(2.76) 0.27(0.05) 97.17(97.17) 0.00(0.00) 0.02(0.02)

DOS PCA5 2.70(2.69) 0.02(0.06) 97.26(97.16) 0.00(0.00) 0.02(0.09)
(229853) PCA6 2.76(2.77) 0.02(0.03) 97.20(97.06) 0.00(0.00) 0.02(0.14)

PCA7 2.71(2.75) 0.04(0.03) 97.22(97.06) 0.00(0.00) 0.02(0.16)
PCA3 85.09(65.35) 1.75(9.65) 0.44(14.91) 12.72(8.33) 0.00(1.75)
PCA4 68.86(77.63) 9.65(5.70) 9.65(9.65) 5.26(6.58) 6.58(0.44)

U2R PCA5 35.53(62.28) 47.37(19.74) 11.40(13.60) 4.39(3.95) 1.32(0.44)
(228) PCA6 38.16(41.23) 47.37(3.51) 7.46(48.25) 5.70(4.39) 1.32(2.63)

PCA7 38.16(41.23) 47.37(3.51) 7.46(48.25) 5.70(4.39) 1.32(2.63)
PCA3 99.60(99.60) 0.02(0.02) 0.02(0.02) 0.01(0.01) 0.35(0.35)
PCA4 99.83(99.81) 0.03(0.01) 0.03(0.03) 0.01(0.02) 0.11(0.12)

R2L PCA5 99.81(99.38) 0.02(0.14) 0.04(0.04) 0.03(0.04) 0.10(0.41)
(16189) PCA6 99.82(99.43) 0.02(0.14) 0.03(0.02) 0.04(0.05) 0.09(0.36)

PCA7 99.81(99.42) 0.02(0.14) 0.02(0.02) 0.06(0.06) 0.09(0.36)

PSP3=92.12%(PSP3=92.11%),PSP4=92.12%(PSP4=92.05%)
PSP5=92.23%(PSP5=92.13%),PSP6=92.24%(PSP6=92.06%)

PSP7=92.23%(PSP7=92.05%)

Tab. 8: Confusion matrix relative to five classes using the C4.5 algorithm after dataset projection onto 3,4,5,6 or 7
principal component axes. The values between parentheses correspond to gathering the whole attacks results into five
categories after classification.


