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Abstract. It is well known that signature based intrusion detection
systems are only able to detect known attacks. Unfortunately, current
anomaly based intrusion detection systems are also unable to detect all
kinds of new attacks because they are designed to restricted applications
on limited environment. Current hackers are using new attacks where
neither access control systems nor current signature based systems can
prevent the devastating results of these attacks against information sys-
tems. We enhance the notion of anomaly detection, introduce necessary
conditions that should be taken into account by the building detection
models and propose a new machine learning algorithm based on decision
trees to discover known and unknown attacks in real time. Experimen-
tal results demonstrate that the proposed method is highly successful in
detecting new attacks and significantly outperforms previous work.

1 Introduction

Anomaly intrusion detection systems are not as well studied or explored as mis-
use detection ones. Misuse detection consists in using patterns of well known
intrusions to match and identify known labels for unlabeled data sets. In fact,
many commercial and open source intrusion detection systems are misuse based
ones. Recently, attackers have explored serious break-ins to many commercial
and government sites where serious damages have occurred. The different in-
trusions that have been used were new. This situation was foreseeable because
the attackers are attempting to develop new attacks forms where neither misuse
detection tools nor access control tools installed in our networks may detect or
stop these new attacks forms.

By contrast, anomaly detection consists in building profiles of normal be-
haviors then detecting any deviation of a new behavior from the learned normal
profiles. This definition of anomaly detection is restrictive because only one class
which corresponds to the normal behavior is learned.

In this paper, we extend the definition of anomaly detection to not only take
into account normal profiles but also handle known attacks and explore super-
vised machine learning techniques, particularly decision trees. These techniques
have proven their efficiency in predicting the different classes of the unlabeled
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data in the test data set for the KDD99 intrusion detection contest. Since ma-
chine learning techniques, generally, cannot find boundaries between known and
unknown classes, an extension of decision trees is introduced to deal with new
unknown anomalies.

The rest of the paper is organized as the following. Section 2 presents our
motivations for extending the notion of anomaly detection. Section 3 enhances
machine learning techniques, particularly decision trees, to handle new instances
that are not considered in all current supervised machine learning techniques.
Using the improvement of decision trees suggested in Section 3, Section 4 de-
scribes the experimental results obtained, using the decision trees algorithm and
the modified algorithm, over the DARPA98 intrusion detection data set [3]. The
KDD99 intrusion detection contest [5] uses a version of this data set. The data
set provided in DARPA98 has been severely criticized in several previous works.
However, we explain why this data set remains interesting to experiment our pro-
posal. The first results obtained with our enhanced algorithm over KDD99 do
not correspond to what we expect. This is due, in reality, to the transformation
of DARPA98 to KDD99. Section 5 explains why KDD99 is not an appropriate
transformation of DARPA99 and suggests necessary conditions a transforma-
tion technique should satisfy in order to keep maximum data information while
transforming tcpdump traffic into connection records. Section 6 presents the re-
sults we obtained when considering new attacks not present in DARPA98 and
Section 7 offers conclusive remarks and discusses future work.

2 Motivations

Anomaly intrusion detection is the first intrusion detection method that was
introduced to monitor computer systems by Anderson [1] in 1980. At that time,
intrusion detection was immature since only user behavior and some system
events were taken into account. In fact, this approach consisted in establishing
normal behavior profile for user and system activity and observing significant
deviations of the actual user activity with respect to the established habitual
profile. Significant deviations are flagged as anomalous and should raise suspi-
cion. This definition did not take into account the expert knowledge of known
vulnerabilities and then known attacks. This is why we enhance the notion of
anomaly detection not only by considering normal profiles but also by taking
into account abnormal behaviors that are extracted from known attacks.

Since we have knowledge about known vulnerabilities and their correspond-
ing attacks, we may enhance the anomaly detection by adding to the learning
step the abnormal behavior corresponding to known attacks. Therefore anomaly
detection would consists in learning all known normal and attacks profiles. Based
on this knowledge, anomaly detection has then to detect whether a new observed
profile is normal or abnormal and its corresponding known attack is determined
or the observed profile is new and therefore is considered as a novel unknown
behavior. Thereafter, we suggest that a diagnosis should be done on the observed
traffic that has caused the detection of the new anomaly in order to find out the
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reason of this new observation. If it corresponds to a normal new activity that
was never observed before it is flagged as a normal profile or as a new attack.
The new observations with their real classification would then be considered for
further investigation. We note that the diagnosis of new observed behaviors is
not an objective of this paper. This will be discussed in a forthcoming paper.

Current supervised machine learning and classification techniques are not
written to detect new classes that are not present in the training data set (new
profiles that are not seen before in our case). Therefore, we investigate in the
following section the decision trees induction algorithm and improve it in order to
deal with these new classes. We choose to use decision trees induction algorithm
to best clarify the idea of new cases since it is such an illustrative technique. In
addition, it is the best winning entry [4] for KDD99 intrusion detection contest.
Added to this the fact that we are familiar with this technique since we used it
to detect intrusions by combining it with principal component analysis for space
and time reduction [2].

3 Decision Trees Enhancement

Decision trees classifiers are based on the “divide and conquer” strategy to con-
struct an appropriate tree from a given learning set S containing a finite and not
empty set of labeled instances. In the following, we are interested in the C4.5
Quinlan algorithm [7].

Most of the decision trees algorithms use a top down strategy; i.e. from the
root to the leaves. Two main processes are necessary to use the decision tree,
respectively called the building process and classification process.

3.1 Building process

It consists in building the tree by using the labeled training data set. An attribute
is selected for each node based on how it is more informative than others. Leaves
are also assigned to their corresponding class during this process.

To measure how informative a node is, Shanon entropy is used to construct
the decision trees. The selection of the best attribute node is based on the gain
Gain(S, A) where S is a set of records and A a non categorical attribute. This
gain defines the expected reduction in entropy due to sorting on A. It is calcu-
lated as the following [7]:

Gain(S, A) = Entropy(S) −
∑

v∈V alues(A)

| Sv |
| S | Entropy(Sv) (1)

If we consider only Gain(S, A) then an attribute with many values will be au-
tomatically selected.

One solution is to use GainRatio instead [7]

GainRatio(S, A) =
Gain(S, A)

−
∑c

i=1
|Si|
|S| log2

|Si|
|S|

(2)

where Si is a subset of S for which A has a value vi.
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3.2 Classification process

A decision tree is important not because it summarizes what we know, i.e. the
training set, but because we hope it will classify correctly new cases. Thus, when
building classification models, one should have both training data to build the
model and test data to verify how well it actually works. New instances are
classified by traversing the tree from the up to down based on their attribute
values and the node values until one leaf is reached that corresponds to the class
of the new instance.

3.3 Improving the classification process

The decision trees C4.5 algorithm written by Quinlan presents a drawback to-
ward the set of instances that are not covered by any of the rules generated from
the decision tree. He proposes a default class for those instances. The default
class is defined as the one with most items not covered by any rule. In the case
of conflict, ties are resolved in favor of more frequent classes.

Using this principle, a default class from the learning data set is assigned to
any observed instance that may be normal, known or unknown attack.

The default class is assigned to any new instance which is not covered by any
rule generated from the training data set. This classification is useful only in the
case of an exclusive classification; i.e. there is a class for any given instance and
the assigned class has at least one instance in the learning data set. Since we are
interested in detecting novel attacks this classification kind would not be able
to detect new attacks that normally are not covered by any rule from the tree
built during the learning step.

To resolve this problem, we introduce the following principle: A default class
denoted new class is assigned to any new class that does not have a corresponding
class in the training data set. Therefore, if any new instance does not match any
of the rules generated by the decision tree then this instance is classified as a
new class instead of assigning it to a default class.

To illustrate the effectiveness of this new idea, in Section 4, we conduct our
experiments on the KDD99 database since it contains many new attacks in the
test data set that are not present in the training data set and on real traffic in
our laboratory network where some new attacks that were not available when
DARPA98 was built such as the slammer worm and the different DDoS attacks
are presented in Section 6.

4 Experimental Analysis of KDD99

The main task for the KDD99 classifier learning contest was to provide a predic-
tive model able to distinguish between legitimate and illegitimate connections in
a computer network. The training data set contained about 5, 000, 000 connec-
tion records, and the training 10% data set consisted of 494, 021 records among
which there are 97, 278 normal connections (i.e. 19.69%). Each connection record
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consists of 41 different attributes that describe the different features of the cor-
responding connection, and the value of the connection is labeled either as an
attack with one specific attack type, or as normal. There are 39 different attack
types present in the 10% data sets. We notice that there are many attacks that
are present in the test data set but do not have any occurrence in the learning
data set such as saint, mailbomb, httptunnel, snmpguess, etc.

Each attack type falls exactly into one of the following four categories: prob-
ing, DoS, U2R and R2L.

The task was to predict the type of each connection in the test data set
containing 311, 029 connections.

There are many occurrences of new attack forms for the two classes U2R and
R2L in the test data set. The Probing class presents also many occurrences of
new attacks forms in the test data set. However, for this class the difference is in
the name of the tool used for the scan operation, not in the method with which
the probing is performed.

We should mention that the different attacks present in the test data set that
do not have any occurrence in the training data set cannot be easily classified
into their appropriate class and will be classified in the class that has a form
close to theirs and generally to the normal class. However, if the connection form
does not characterize precisely the corresponding attack or the normal traffic as
its initial tcpdump form then the classification of the new attacks would be
unforeseeable.

To rank the different results a cost matrix C is defined. A cost per test (CPT)
was calculated using the formula given in Equation 3.

CPT =
1
N

5∑
i=1

5∑
j=1

Ci,j ∗ CMi,j (3)

where C corresponds to the cost matrix, N is the number of instances in the
test data set and CM corresponds to the confusion matrix.

In the following, we present the different experiments and results obtained
when using the different rules generated from the standard C4.5 algorithm. In
the second step, the enhanced C4.5 algorithm, as explained in Section 3 to handle
new instances, is used.

The accuracy of each experiment is based on the cost per test and the per-
centage of successful prediction (PSP) on the test data set.

PSP =
number of successful instance classification

number of instances in the test set
(4)

Table 1 presents the confusion matrix for the 5 classes when using the rules
from the decision trees generated by the standard C4.5 algorithm of Quinlan [7].

From Table 1, the two classes R2L and U2R are badly predicted. On the
other hand, many probing and DoS instances are misclassified within the normal
class. Most misclassified instances are predicted as normal. This is due to the
supervised C4.5 algorithm that assigns a default class among known classes as
explained in Section 3.
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Predicted %Normal %Probing %DoS %U2R %R2L
Actual

Normal(60,593) 99.47 0.40 0.12 0.01 0.00

Probing (4,166) 18.24 72.73 2.45 0.00 6.58

DoS (229,853) 2.62 0.06 97.14 0.00 0.18

U2R (228) 82.89 4.39 0.44 7.02 5.26

R2L (16.189) 81.60 14.85 0.00 0.70 2.85

PSP = 92.30%, CPT = 0.23425
Table 1. Confusion Matrix relative to the five classes using the rules generated by the
standard C4.5.

Hence, if a new instance is presented (different from all other known normal
or abnormal instances), it is automatically classified as the default class normal
since it has the highest number of uncovered instances.

Table 2 shows the confusion matrix obtained when using the enhanced C4.5
algorithm that we have modified to affect a class labeled new to any uncovered
or unseen instance.

Predicted %Normal %Probing %DoS %U2R %R2L %New
Actual

Normal(60,593) 99.43 0.40 0.12 0.01 0.00 0.04

Probing (4,166) 8.19 72.73 2.45 0.00 6,58 10.06

DoS (229,853) 2.26 0.06 97.14 0.00 0.18 0.36

U2R (228) 21.93 4.39 0.44 7.02 5.26 60.96

R2L (16,189) 79.41 14.85 0.00 0.70 2.85 2.20

PSP = (92.30 + (0.57))%, CPT = 0.2228
Table 2. Confusion matrix when using the generated rules from the enhanced C4.5
algorithm.

Using the new enhanced C4.5 algorithm, we have increased the detection rate
of the U2R class by 60.96% which decreases the false negative rate of this class
from 82.89%(189/228) to 21, 93%(50/228). The detection rate of the Probing
class is also enhanced by 10, 06% corresponding to 413 instances which are not
classified as a normal traffic but as a new class, hence as a new attack.

We should mention that the highest ratio for the U2R class has never ex-
ceeded 14% according to the different results available in the literature. Using
our approach this attack is detected as an abnormal traffic with a detection rate
of 67.98%.

However, the false negative rate of the R2L class remains stable. In addition,
even if we count the detection ratio of the new instances that are classified as
new attack the PSP (92.30% + 0.57% = 92.87%) ratio remains far from 100%.

The cost per test obtained by our method is much more better than the
Pfahringer’s winning entry [4] by performing a CPT = 0.2228.

In our knowledge, there is not any work in the literature that has exceeded
the Pfahringer’s [4] winning entry.

Most R2L instances are predicted as normal connections. In the following,
we explain why this class is misclassified in the normal type. The main reason is
the transformation done over DARPA98 to obtain KDD99 where most attacks
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of type R2L in the test data set are not different from many normal connections
in the training data set.

In order to construct valuable behavior models, many features should be
gathered to characterize the considered behavior. However, the raw “unstruc-
tured” data collected from a network or other sources are not easy to analyze
by different classification techniques which need more structured data format
to work well. A data preprocessing phase of the gathered raw data must be
performed to extract meaningful features and measures.

5 Why KDD99 is not an appropriate transformation?

The intrusion detection database KDD99 is a result of a transformation, into
connection records using some data mining techniques [6], of a tcpdump traffic
DARPA98 collected in a local area network, during nine weeks, simulating a
typical U.S. Air Force LAN. The MIT Lincoln Laboratories operated this sim-
ulated LAN as if it were a true Air Force environment, but peppered with the
39 different attacks types. However, we should mention that the transformation
done in MADAM ID [6] presents some drawbacks due to some limitations of
the tools used for this task and the lack of some basic definitions and necessary
conditions that must be satisfied by this transformation.

In the following, we introduce some definitions and conditions that a good
transformation should satisfy without losing meaningful information from the
initial form of the data.

The transformation task may be formalized as the following. Let R be the
raw data set collected from the network traffic or other sources depending on the
environment we are interested in analyzing to discover known or new computer
security attacks. We can formalize audit data preprocessing by a transformation
function T from the raw data set R to a well featured data item set I. This last
data set denotes the whole possible values of the different considered features.
An item x of I is a vector of the form (v1, v2, ..., vn) where each value vi is either
discrete or continuous. Let C = {c1, c2, ..., cm} be a set of the different known
classes to which a behavior (an item) may fall.

The classification function, that we denote F , is then used to assign a class
label to an input item vector.

5.1 What is an appropriate transformation function

1. The transformation model which consists in transforming the raw data set
into their corresponding items in I should be rich enough to distinguish
between the different behaviors in the new feature space after transformation.
A poor transformation model T may occur when some attribute values are
the same in different data items that have different class labels. This means
that if we consider ri, rj ∈ R and T (ri) = xi, T (rj) = xj where xi, xj ∈ I
then if F (ri) 6= F (rj) the transformations of ri and rj should be different,
i.e xi 6= xj . If this is not the case then the data items that share the same
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attribute values but have different class labels are considered as noise data
and their number must be reduced so that accurate classification models
may be learned from I.

2. If two items T (ri) = xi and T (rj) = xj , issued from a transformation T ,
have two distinct classes and have similar values for all considered attributes
then two cases are present:
(a) either the set of the considered attributes issued from transformation

T is not sufficient to characterize and then differentiate them; i.e the
transformation function T is poor. Then we should add new attributes
that can render this transformation rich, hence the problem is resolved.
More formally: if ri 6= rj , real class(ri) 6= real class(rj) and T (ri) =
T (rj); then the function T is poor. If this case occurs then the corre-
sponding records present incoherence with the real traffic. Therefore,
the number of attributes which is not sufficient should be increased to
distinguish the two distinct records in the new feature space.

(b) or we cannot distinguish between the raw traffic of the two connections
ri et rj having two distinct classes. In this case we cannot find a trans-
formation function T that may distinguish the two connections form in
the new feature space. More formally: If ri = rj and real class(ri) 6=
real class(rj) then @ T such that T (ri) 6= T (rj).
This last case is possible if we consider a subject b that knows the pass-
word of another subject a. The generated data by the intruder b who is
using the account of the user a, during a telnet authentication session
for example, would not be different from that data generated by the le-
gitimate user a. In this situation, there is no intrusion detection method
that can find this intrusion without using any additional information.

In the following, we verify the satisfaction of these different necessary condi-
tions on the transformation performed by W. Lee et al. [6] and demonstrate that
it is not the case and some attacks, having high occurrence number, belonging
to the R2L class do not satisfy the first condition presented above. The bad
classification of class R2L is particularly due to the transformation performed
over DARPA98 data sets.

5.2 Discussions

In this section, we show that the different KDD99 data sets issued from the
transformation T implemented in MADAM/ID [6] is poor and the high false
negative rate for the R2L class is due to this poor transformation.

In the following, a comparative study between the confusion matrices ob-
tained in two tests, is presented, where in the first case we use the default train-
ing data set of KDD99 as the training data set and in the second test we use
the test data set as the training set. In each test, we examine the percentage of
successful prediction (PSP) using the learning data set of each test as a test set.
The objective of this analysis is to help us discover whether the two databases
are coherent. Therefore, the different prediction ratios of the different databases
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may help us to find out whether the transformation done by W. Lee et al. [6] is
poor or not.

The learning data set coherence Let us examine now Table 3 that corre-
sponds to the confusion matrix obtained from initial learning database when
using our enhanced C4.5 induction decision trees algorithm.

Predicted %Normal %Probing %DoS %U2R %R2L %New
Actual

Normal(97,278) 99.94 0.01 0.00 0.00 0.00 0.05

Probing (4,107) 0.17 99.78 0.00 0.00 0.00 0.05

DoS (391,458) 0.00 0.00 99.99 0.00 0.00 0.01

U2R (52) 1.92 1.92 0.00 90.39 0.00 5.77

R2L (1,126) 0.62 0.00 0.00 0.09 98.93 0.36

PSP = 99.99%
Table 3. Confusion matrix obtained using the enhanced C4.5 algorithm on the initial
KDD99 learning database.

We notice that the different classes are predicted with high rates using the
learning database to construct the tree and to generate the different rules. The
successful prediction ratio is PSP = 99.99%. However, the lowest prediction
ratio is that of the U2R classes because there are not enough instances (52) of
this class in the learning set. Our enhanced C4.5 algorithm (see Table 3) has
proven its ability to classify the least frequent classes, which are not covered by
any of the rules generated by the decision tree algorithm, as novel attacks rather
than as normal traffic.

In the field of supervised machine learning techniques, a method is said pow-
erful if it learns and predicts easily the different instances of the training set with
a low error detection and then generalizes its knowledge to predict the class of
new instances. Unfortunately, the results obtained in Table 3, C4.5 induction
algorithm has efficiently learned the different instances of the training set but
could not classify new instances, for the moment, into their appropriate category
(see for instance Table 1).

The confusion matrix presented in Table 1 shows that the two classes U2R
and R2L are badly classified into the normal class. We have expected this result
because the standard C4.5 is not designed to detect novel classes that are not
present in the training set. We have improved this algorithm to handle these
new instances but the R2L class, as showed in Table 2, remains badly classified.
Hence, three cases are possible; either the enhanced algorithm failed to detect
these new attacks or some KDD99 data are false or some conditions presented
in Section 5.1 are possibly not satisfied. If the second case is true, then these
data should be analyzed to verify their exactitude. The first assumption is not
possible because if a new instance is totally distinct from all other instances of
the learning set if there is not any rule issued from the decision tree generated
from the learning set that can classify it (but the default rule that can classify
it as a new instance with the enhanced algorithm) else it is not totally distinct
and then belongs certainly to a known class.
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The results of Table 2 showed that the enhanced C4.5 algorithm detected
more new attacks of type U2R in the test data set. However, the new R2L
attacks are predicted as normal connections. We have investigated those new at-
tacks of type R2L that are predicted as normal traffic. There are exactly 7 new
R2L classes namely {named, sendmail, snmpgettattack, snmpguess, worm, xlock,
xsnoop}. Most of these attacks are predicted as normal.The false negative rate is
about 99.10% (resp. 99.97%) using the enhanced C4.5 algorithm (resp. the stan-
dard C4.5 algorithm). We focus on two of them; snmpgettattack, snmpguess since
they present 74.79%(12108/16189) out of the R2L attacks in the test data set.
All instances of these two attacks are predicted as normal connections (within
R2L class in Table2).

These results show that these new R2L connections are not distinct from the
normal connections issued after transformation.

In the following paragraph, we investigate the test data set from which we
construct a decision tree in order to see if it is coherent and whether the new
R2L instances are classified as normal or new from the tree generated by the test
data set. After the test, we may conclude that our hypothesis of transformation
done over DARPA98 to KDD99 is poor and should be improved.

The test data set incoherence In this second test, we invert the two databases.
Hence, the learning database consists of 311, 029 connections and the test database
contains 494, 021 connections.

Using the standard and the enhanced C4.5 algorithms, we obtained the con-
fusion matrix presented in Table 4 of the learning instances classification for this
second test.

Predicted %Normal %Probing %DoS %U2R %R2L %New
Actual

Normal(60,593) 98.34 0.02 0.03 0.01 1.50 0.11

Probing (4,166) 0.19 99.35 0.07 0.00 0.00 0.38

DoS (229,853) 0.01 0.00 99.99 0.00 0.00 0.00

U2R (228) 2.19 0,00 0.00 96.93 0.00 0.88

R2L (16,189) 36.40 0,02 0.01 0.05 63.33 0.19

PSP = 97.70%
Table 4. Confusion matrix relative to five classes using the rules generated by the
enhanced C4.5 algorithm over the learning database of the second test.

Although the percentage of successful prediction rate, from confusion matrix
4, is PSP = 97.70%, it is considered very low since it consists in classifying the
labeled (known) instances of the learning data set. This means that the C4.5
algorithm failed to learn instances with their appropriate labels. This rate is
considered very low in the machine learning domain because it could not learn
the instances whose classes are known a priori. On the other hand, The R2L
class is highly misclassified. The classifier has learned only 63.33% from all the
R2L labeled instances.
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Most misclassified R2L instances are predicted as normal connections. This
result justifies our observation stated in the above subsection i.e the new R2L
attacks are not distinct from the normal connections, issued after transformation.

We investigated the different ratios of misclassified attacks of type R2L, we
find out that these misclassified attacks are of type snmpgettattack or snmpguess.

The snmpgetattack type is the most frequent class type present in the R2L
category (7, 741/16, 189). The decision rules generated from the decision tree
constructed from the second database could not classify 71.85% of snmpgetattack
instances that correspond to 5, 562 instances; this presents a high false negative
rate. Then the test data set of KDD99 is considered incoherent.

In this case, it is not interesting to test the new test database of the second
test since the learning set is not learned.

From this, we are sure that these data are false or poor due to the transfor-
mation function done by W. Lee et al. in the MADAM/ID tool [6].

The new two attacks snmpguess and snmpgetattack that are present only
during the two test weeks correspond in reality to an attack scenario. In this
scenario an attacker guesses the SNMP community password and then remotely
monitors the router activity. The SNMP password is set to “public” by default,
and is often never changed from this default value.

In the DARPA98 and then KDD99, the SNMP community password remains
by default (“public”). Hence, during the first day of the first test week, there
is an attack, against an internal router of the SNMP community password by
sending SNMP requests to that router using different passwords until receiving a
response from that router indicating that the password is correct. This attack is
similar to the dictionary attack for password guessing. We should mention that
there were more than 30, 000 SNMP requests, in the DARPA98 tcpdump traffic,
to find out the correct password. This attack corresponds to snmpguess that
is considered as an R2L attack presenting 26.75% (4, 367/16, 189) connections
in the R2L class. Once the attacker has guessed the password, he may easily
monitor the router without being detected. Moreover, this attacker has come
back many times to monitor this community during the two test weeks by using
the guessed password. The attacker monitoring traffic corresponds to the the
R2L snmpgetattack in the KDD99 database that presents 47.82% (7, 741/16, 189)
of the whole R2L connections in this test database.

All instances of this last attack (snmpgetattack) are predicted as normal
(within R2L class in Table 4). This result is expected and corresponds exactly
to the situation presented in the point 2.b in Section 5.1. Indeed, this traffic
will be recognized as normal because the password is guessed by an attacker.
However, the snmpguess category should be recognized as a new attack or as
a dictionary attack like guess passwd category. Unfortunately, there is not any
attribute among the 41 attributes to test the SNMP community password in the
SNMP request as it is the case with some attributes that verify if it is a root pass-
word or a guest password but this is considered only in the case of telnet, rlogin,
etc. services. Hence one interesting information is lost after transformation with
which we cannot distinguish the traffic generated by the snmpguess attack with
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the normal traffic. This situation corresponds exactly to the necessary condition
a transformation function T should satisfy as described in point 2.a in Section
5.1. Therefore, this transformation function is poor and some attributes should
be added to differentiate some attacks using the dictionary from other traffic.

The R2L could never be predicted with high rates exceeding the Pfahringer [4]
results since the transformation function T introduced by W. Lee et al. [6] is poor
where normal SNMP connections are similar to snmpguess and snmpgettattack
connections after transformation into 41 attributes.

6 Other experiments of new attacks detection

In this section, we verify the efficiency of the enhanced C4.5 algorithm in de-
tecting new attacks that are not present when DARPA98 was built.

The transformation and the different programs (MADAM/ID [6]) done at the
Columbia University are not available3. We did write our own programs that per-
mit to transform the network traffic into connection records but respecting the
different rules and conditions that should be taken into account as explained in
Section 5.1. The new attacks we investigate are those flooding attacks generated
by the different known DDoS tools such as Trinoo, TFN, TFN2K, etc., used
during the year 2000 against many servers over Internet. The second attack cat-
egory is the Slammer DoS worm that infected thousand vulnerable servers over
internet in 2003.

We tried to detect the new DDoS and Slammer attacks that were not known
when the DARPA98 was constructed as new attacks. Fortunately, they have
been classified as DoS attacks. In reality, the traffic form generated from the
DDoS agents is not different from that of DoS traffic which is already present
in the DARPA98 database. We mention that there is not any signature based
IDS that could detect the flooding DDoS traffic. On the other hand, a signature
based IDS cannot detect the traffic generated by the Slammer worm without
adding appropriate signatures in their database.

We have improved our method as the following. If a new connection is de-
tected as new or as a known attack, we add its corresponding connection record
in the learning database if there is not any connection that is similar to the cur-
rent detected attack in the learning set and then remake the learning step with
the presence of these new attacks in the learning database. This idea permits
the C4.5 classifier learn the new attacks in an incremental fashion. However,
the new connections that are classified in the new category (see instance Ta-
ble 2 particularly the new R2L attacks detected as new traffic) are considered
temporarily abnormal for launching an appropriate counter-measure. However,
a thorough diagnosis should be performed to find out whether it is a new traffic
corresponding to a new normal activity or it is a new attack that should be
added to the learning database for further investigation.

3 These programs are licensed to a company who now is developing it commercially.



Detecting Known and Novel Network Intrusions 13

7 Conclusion

In this paper, a new anomaly intrusion detection based on decision trees is in-
vestigated and tested over the KDD99 data sets and over real network traffic
in real time. We have proven its efficiency and its application has exceeded the
winning entry of the KDD99 data intrusion detection contest. Since the differ-
ent MADAM/ID programs are not available and present many shortcomings,
we have written the different programs that transform tcpdump traffic into con-
nection records following some necessary conditions we defined. The objective
of our contribution is threefold. The first consists in extending the notion of
anomaly intrusion detection. The second is the necessity to improve machine
learning methods by adding a new class into which novel instances should be
classified since they should not be classified as any of the known classes in the
learning data set. The third contribution consists in introducing some necessary
conditions that should be verified by a rich transformation function. This last
point was not taken into account during the transformation of the DARPA98
into KDD99 data sets. As a result many attacks traffic became identical to nor-
mal traffic after transformation. Our tool is written in C/C++ for GNU/GPL
and works in real time. As future work, we are investigating its use with many
correlation tools such as CRIM or CARDS and any other explicit or semi explicit
correlation tool. Since these tools do not deal with unknown attacks, we are cur-
rently investigating their extension to handle these new attacks generated by
our new anomaly detection to integrate them in the ongoing correlation attack
scenarios.

Acknowledgments

This work was funded by the French ministry of research under the ACI DADDi
project.

References

1. J. P. Anderson. Computer Security Threat Monitoring and Surveillance. Technical
report, James. P. Anderson Co., Fort Washington, Pennsylvania, 1980.

2. Y. Bouzida and S. Gombault. Eigenconnections to Intrusion Detection. In 19th

IFIP International Information Security Conference (SEC’2004), pages 241–258,
Toulouse, France, August 2004. Kluwer Academic Publishers.

3. DARPA Intrusion Detection Evaluation. Available at:
http://www.ll.mit.edu/IST/ideval/data/data index.html, 1998.

4. C. Elkan. Results of the KDD’99 Classifier Learning. ACM SIGKDD, 1:63–64, 2000.
5. S. Hettich and S. D. Bay. The UCI KDD Archive. Available at:

http://kdd.ics.uci.edu/, 1999.
6. W. Lee and S. Stolfo. A Framework for Constructing Features and Models for Intru-

sion Detection Systems. ACM Transactions on Information and System Security,
3(4), November 2000.

7. J. R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann Publishers,
1993.


