
Concrete and Abstract Based Access Control

Yacine Bouzida1, Luigi Logrippo1, and Serge Mankovski2

1Université du Québec en Outaouais, Gatineau, Québec, Canada
2CA Labs, Thornhill ON, Canada

June 14, 2011

Abstract

Access control models allow expressing access control rules (also called policies) stating that
certain subjects (or users) have or do not have the right (or privilege) to access certain objects
in order to execute certain actions under certain conditions. Several existing models allow
expressing rules only for specific subjects, objects and actions. Role Based Access Control
(RBAC) introduced the notion of role, which is an abstraction over subjects. Organization
Based Access Control (OrBAC) generalized further, by allowing specifying rules involving
abstract subjects, abstract actions and abstract objects. We propose here a model that allows
expressing rules involving any combinations of abstract or concrete subjects, actions, and
objects, as well as conditions over them. For this reason, our model is called Concrete and
Abstract Based Access Control model (CABAC). The semantics of our model is expressed in
terms of first-order predicate logic. Temporal, spatial, knowledge, and historical contexts can
be specified and combined. We show how in this model it is possible to express hierarchies of
subjects, objects and actions as well as propagation of policies over hierarchies. Further, while
in most models subjects, objects and actions, whether concrete or abstract, must be specified
statically, it is possible in our model to specify subjects, actions and objects dynamically, i.e.
according to conditions that can vary over time. Access control rules can also be explicitly
revoked and subjected to different types of constraints, among which are cardinality constraints
and separation of duties.

1 Introduction and related work

Access control models allow expressing access control rules (also called policies) stating that certain
subjects (users) have or do not have the right (or privilege) to access certain objects in order to
execute certain actions under certain conditions. However, managing security policies that associate
privileges to subjects is complex as these policies are likely to change over time. Several existing
models allow expressing rules only for specific subjects, objects and actions. Role Based Access
Control (RBAC) [14, 21] introduced the notion of role, which is an abstraction over subjects. In
RBAC, privileges are assigned to roles. The different roles are stable while the different subjects
assigned to them might change. In addition, the concept of role is associated with the concept of
functional role. In a hospital such roles could be doctors, nurses, etc. Defining relations between
users and roles on one hand and roles and permissions on the other hand allows flexibility for
managing security policies in organizations. For example, a security officer can express an exclusion
relation between two roles in order to enforce separation of duty policies. He may also define
inheritance between two roles to allow delegation of authority [10], by which a user may assign
some rights he owns to another user.

However, the simplest RBAC models do not allow defining permissions that may be granted to
roles when certain context conditions are satisfied. For instance, “nurses are allowed to read medical
records only in emergency cases” is one example of such a rule. Extensions of RBAC that take
into account temporal contexts over roles are investigated in the Temporal Based Access control
(TRBAC) model [4] and its extension Generalized Temporal Based Access Control (GTRBAC)
model [17]. The corresponding roles of the RBAC extension models could be available at certain

1

times and unavailable at other times and it is possible to express a variety of temporal constraints
over roles including periodic and duration constraints. For example, GTRBAC can handle a policy
that says: “a part time nurse may be authorized to work from 09h00 to 13h00 during working
days”. Such a requirement may be supported to specify when the corresponding part time nurse
can be enabled and then may be activated by a legitimate user who is authorized to play the role
of a part time nurse. GEORBAC —a spatially aware RBAC— is introduced in [5] as an extension
of the RBAC model to deal with spatial aspects of applications such as mobile applications.

Park and Sandhu [20] have presented a complex access control model, called UCON-ABC,
which includes the concepts of authorizations, obligations, and conditions. UCON supports role
and group hierarchies, but does not explicitly support the concept of different levels of abstraction
for subjects, actions and objects, nor dynamic definition of these, which are the main concerns
of CABAC. Privilege inheritance is not explicitly discussed in [20], implying that UCON adopts
the inheritance model that is present in RBAC. In this area, our paper generalizes over RBAC
by introducing the concept of “propagation direction” (Section 6). Since the areas of application
for the two models are essentially the same, and the predicate logic semantics are similar, future
research will have to attempt a combination of what will prove to be the most useful aspects of
them.

In spite of all these extensions, there is not a general RBAC model that allows expressing
different privileges such as permissions, prohibitions and obligations that apply only when certain
conditions are satisfied. This is one of the reasons why the OrBAC model [1] was introduced.
The different privileges (i.e. permissions, prohibitions, etc.) that are expressed within OrBAC are
specified using contexts. In addition, the OrBAC model provides means to specify within a unique
framework the fact that organizations may be structured into sub-organizations having their own
specified security policies.

In this paper, we introduce the concept of Concrete and Abstract Based Access Control model
(CABAC) which inherits from the concept of role in RBAC and OrBAC, and from the concept of
concrete entities such as subjects and objects in Discretionary Access Control (DAC) [19].

Most access control models specify static security policies. An exception is the OrBAC model
that uses contexts over privileges (permissions, prohibitions and obligations) for dynamic activation
of these privileges. Dynamic environments need such expressiveness for deploying real time access
control policies. To our best knowledge, OrBAC is the only access control model known in the
literature, that offers this expressiveness. As an example, the OrBAC high level policy specification
has been used as the final stage in a voice over IP (VoIP) framework in order to definitively react
against intrusions [11]. However, OrBAC expresses only contexts over privileges. Consider as
example a rule that says that “only emergency nurses and emergency doctors that are currently
in the emergency ward are allowed to use the emergency line”. To express this in the OrBAC
formalism, or in all extensions of RBAC we know, we need two rules, one for each role: nurses
and doctors. More generally, if there is a general rule that applies to certain roles, then there will
have to be as many rules as there are roles that should be considered. We propose to improve such
multiplication of rules by introducing in CABAC the notion of dynamic role assignment. This is
performed by assigning dynamically defined roles to subjects and then assigning privileges to these
roles. In such situations, the simplification made possible by the use of the CABAC model with
respect to RBAC and OrBAC is comparable to the simplification made possible by RBAC models
with respect to DAC. Notice that dynamic assignment also applies to actions and objects that can
be grouped into abstract actions and abstract objects respectively.

In Section 8, we introduce the notion of dynamic revocation that allows revoking dynamically
a role from a subject when some conditions are satisfied. This is useful when considering threats
inherent in computer networks. For example, the http server role may be revoked from a machine
that plays this role if it is attacked. The contextual condition in this case is the event of attack.
Once the server role is revoked from the attacked machine, the latter loses all privileges of that
role and appropriate policies are executed for the machine whose goal is to counter the effects of
such attacks. One of the simplest actions that may be the result of such policies is shutting down
the attacked machine or stopping the corresponding http dæmon.

Finally, the CABAC model allows specifying policies at different levels of abstraction. This
flexibility allows specifying exceptions and constraints for each level of abstraction.

The rest of this paper is organized as follows. Section 2 presents the general CABAC model.

2

Section 3 presents the manner by which we specify high level access control policies, Sections 4
and 5 explain how access control policies can be specified at different levels. Section 5.3 presents
the specification of contexts and combination of different contexts that should be satified in order
to grant the privileges. Section 6 presents hierarchy inheritance over subjects, actions and objects.
While contexts are only expressed with privilege specification in OrBAC [1], in CABAC they are
expressed with dynamic entities, as presented in Section 7. The dynamic assignment and revocation
of entities are respectively discussed in Sections 7 and 8. Section 9 shows how to specify different
constraints and Section 10 contains a comparison between OrBAC (and thus implicitly RBAC)
and CABAC. Finally, Section 11 concludes the paper and discusses some future work.

2 Concrete and abstract based access control - CABAC

The main goal of access control policies is to specify the privileges (permissions, prohibitions, obliga-
tions, recommendations and faculties) that regulate the different actions that may be performed by
subjects on objects. These privileges may be expressed using first-order predicates or deontic logic
modalities. permission(s, a, o) (resp. prohibition(s, a, o), obligation(s, a, o), faculty(s, a, o) or
recommendation(s, a, o)) means that a subject s is permitted (is prohibited, is obliged, has the fac-
ulty or is recommended) to perform action a on object o. For instance, permission(doctor,read,medi-
cal record) means that any doctor may read any medical record. In general, for many pur-
poses, we would like to be able to specify contextual conditions on subjects, objects and ac-
tions. An expression such as doctor(Alice) can be used to state that Alice is a doctor, or medi-
cal record(document99.doc) can be used to state that document99.doc is a medical record. Privileges
are granted when all such conditions are true. Rule-based languages that allow to specify such
conditions have been proposed in [13, 15, 16] where the general format to express privileges is:

∀s ∈ S, ∀a ∈ A,∀o ∈ O, (condition)→ privilege(s, a, o)

where privilege may be a permission (resp. prohibition, obligation, recommendation or faculty), S
is a set of subjects, A a set of actions and O a set of objects. A positive or a negative authorization,
an obligation, a recommendation or a faculty are privileges in our model. Hence, the above rule
means that for any subject s, action a and object o, if the provided condition is satisfied, then for
subject s it is permitted (prohibited, obligatory, facultative or recommended) to perform action a
on object o.

Notice that prohibition is the negation of permission; this corresponds to the following equiv-

alence ¬permission(s, a, o)
def
= prohibition(s, a, o) meaning that the fact that a subject s is not

permitted to perform action a on object o is equivalent to the fact that subject s is prohibited to
perform action a on object o.

Since we may grant privileges (permissions, prohibitions, obligations, faculties and recommenda-
tions) according to certain conditions involving subjects, actions, objects and various combinations
of them, CABAC as a general and robust access control model should specify different types of
constraints. These constraints should be satisfied for applying the corresponding privileges. Each
constraint is expressed as a logical expression. For instance, the following rule:

R : doctor(s) ∧medical record(o) ∧ identity patient(o, p)∧
different ward(s, p)→ prohibition(s, read, o)

states that a doctor is not allowed to read a medical record of a patient if she/he is not in the same
ward. In this example, we have a subject constraint corresponding to the predicate doctor(s), mean-
ing that subject s is a doctor, an object constraint corresponding to the predicate medical record(o)
meaning that object o is a medical record and a subject-action-object constraint defined as follows:
identity patient(o, p)∧different ward(s, p), where identity patient(o, p) is an application depen-
dent predicate saying that object o is a medical record of a patient p and different ward(s, p)
is an application dependent predicate stating that subject s and patient p are located in different
wards.

Each of the different models mentioned in Section 1 including RBAC [21], OrBAC [1] and DAC
[19], specifies policies either at the abstract level as in the case of RBAC and OrBAC or at the
concrete level as in the DAC model. Our proposal, the CABAC model (Concrete and Abstract
Based Access Control), allows specifying access control policies at different levels of abstraction,

3

namely at both concrete and abstract levels. To each concrete entity (subject, object and action)
corresponds an abstract entity (abstract subject, abstract object and abstract action). At the
abstract level, the security policies are expressed using abstract entities whereas concrete entities
are used to express policies at the concrete level. Both concrete and abstract levels for different
entities can be used in a single rule. For additional flexibility, we introduce in our model the notion
of dynamic abstract entities (dynamic abstract subjects, abstract objects and abstract actions). In
this way, we get a dimension of policy specification that is not present in previously known access
control models. This point is detailed in Section 5.

In the following, we discuss the different aspects of the proposed CABAC model.

3 Expressing high level access control rules

In the CABAC model, the different constraints over subjects, actions and objects correspond
respectively to conditions mentioning that in an organization, an abstract subject is assigned to a
subject, an abstract action is assigned to an action and an abstract object is assigned to an object.

The different constraints over subjects, actions and objects are specified by means of the fol-
lowing relations expressed as predicates:

1 − assign subject is a relation predicate over domains Org × S × AS, where Org is a set of
organizations, S is a set of subjects and AS a set of abstract subjects.

If org denotes an organization, s denotes a subject and as denotes an abstract subject, then rela-
tion assign subject(org, s, as) means that in organization org, abstract subject as is assigned to
subject s.

2 − assign action is a relation predicate over domains Org × A × AA, where Org is a set of
organizations, A is a set of actions and AA a set of abstract actions.

If org denotes an organization, a an action and aa an abstract action, then assign action(org, a, aa)
means that in organization org, abstract action aa is assigned to action a. The ternary relation
assign action can be used to specify different semantics to the same abstract domain in different or-
ganizations. For instance, the abstract action “consulting” may correspond in hospital H Gatineau
to action “read” that can be executed over files while, in hospital H Aylmer, it may correspond
to action “select” that can be executed over a relational database.

3 − assign object is a relational predicate over domains Org ×O ×AO, where Org is a set of
organizations, O is a set of objects and AO is a set of abstract objects.
If org denotes an organization, o denotes an object and ao denotes an abstract object, then
assign object(org, o, ao) means that in organization org, abstract object ao is assigned to ob-
ject o. This ternary relation is useful since it makes it possible to assign different semantics to
policies by changing the definitions of abstract entities. For instance, in hospital Aylmer hospital,
the abstract object medical record may be specified as an Excel document whereas in hospital
Gatineau hospital it is used as a record in a relational database. This is modeled as follows:

• Gatineau hospital: assign object(Gatineau hospital, doc99.xls,medical record)

• Aylmer hospital: assign object(Aylmer hospital, doc99.rec,medical record)

Constraints that combine subjects, actions, and objects are modeled using the notion of con-
text. We note that our definition of context is quite similar to that of the OrBAC model [1]. From
now on, the context will be specified using the predicate occurs that is defined as follows:

4 − occurs is a relational predicate that is defined over Org×S ×A×O×C, where C is a set
of contexts. If org is an organization, s a subject, a an action, o an object and c a context then
occurs(org, s, a, o, c) specifies that context c is satisfied for subject s, action a and object o.

4

The conditions that should be satisfied in order to relate a context within an organization to a
subject, action and object are expressed using logical rules. Section 5.3 presents different examples
for such rules. For instance, a “default” context is defined when no condition should be satisfied to
grant the corresponding authorization. In organization org (i.e. if org ∈ Org), a default context
is used such that1:

∀s ∈ S, ∀a ∈ A,∀o ∈ O, occurs(org, s, a, o, default)← .
Meaning that the default context is always satisfied. This context may be used for general rules
that should be applied unconditionally. For instance, a default context may be used to specify a
rule that says that “nurses are allowed to read medical records”.
As another example, patient doctor is a context that may be defined as follows:

∀s ∈ S, ∀a ∈ A,∀o ∈ O, occurs(hospital, s, a, o, patient doctor)← patient(s, o)

The above specification means that, in organization hospital, context patient doctor is satisfied
between subject s, action a and object o if o is a patient of doctor s.

Policy rules definition As presented in Section 2, each rule is expressed as follows:

∀s ∈ S, ∀a ∈ A,∀o ∈ O, ((condition)→ privilege(s, a, o))

Constraint condition corresponds to the following conjunctive expression:

assign subject(org, s, as)∧assign(org, a, aa)∧assign object(org, o, ao)∧occurs(org, s, a, o, context)

Therefore, we can specify that “a doctor can prescribe medicine to his patients” as follows:
assign subject(hospital, s, doctor) ∧ assign action(hospital, a, prescribe)
∧assign object(hospital, o, patient) ∧ occurs(hospital, s, a, o, patient doctor)
→ permitted(s, a, o)

However, we do not express privileges directly on concrete subjects, objects and actions for specify-
ing high level access control rules. We first specify a privilege (permission, prohibition, obligation,
faculty and recommendation) between abstract entities (abstract subject, abstract action and ab-
stract object) and contexts. This high level privilege is a relation that is defined over domains
Org×AS×AA×AO×C. For instance, permission(org, as, aa, ao, c) means that within organiza-
tion org, abstract subject as is granted the permission to perform abstract action aa over abstract
object ao within context c. For convenience and for differentiating between high level and concrete
level privileges, we use the relation permission for expressing high level permission and permitted
for expressing permission at the concrete level. Similar conventions are defined for other privileges
(using the relations prohibition, obligation, faculty and recommendation for the abstract level and
permitted, prohibited, obliged, facultative and recommended for the concrete level respectively).

Using these high level authorizations such as permission (resp. prohibition, obligation, faculty
and recommendation), the concrete level privilege permitted (resp. prohibited, obliged, facultative
and recommended) is derived from the permission (resp. prohibition, obligation, faculty and rec-
ommendation) assigned to abstract subjects, abstract actions and abstract objects by the relation
permission (resp. prohibition, obligation, faculty, recommendation). Now, we can specify permis-
sion policies in the following general form:

∀org ∈ Org, ∀s ∈ S, ∀a ∈ A,∀o ∈ O,∀as ∈ AS,∀aa ∈ AA,∀ao ∈ AO,∀c ∈ C,
permission(org, as, aa, ao, c) ∧ assign subject(org, s, as) ∧ assign action(org, a, aa)∧
assign object(org, o, ao) ∧ occurs(org, s, a, o, c)
→ permitted(s, a, o)

With the same syntax we can derive: concrete prohibitions (denoted by relation prohibited), con-
crete obligations (denoted by relation obliged), concrete faculties (denoted by relation facultative)
and concrete recommendations(denoted by relation recommended).

1Following [16] and the subsequent literature, we write B ← A to mean that from A one can infer B and B ← .
to mean that B is always true.

5

We notice that permission is defined over Org ×AS ×AA×AO ×C. We have used predicate
overloading as is common practice in object oriented programming in order to simplify the notation
for taking into account different levels of abstraction. Therefore, permission is globally defined
over Org ×AS ∪ S ×AA ∪A×AO ∪O × C.

4 Expressing low level access control rules

Low level policies should be defined when authorizations need to be granted to concrete subjects,
concrete actions and concrete objects within a context. In these cases, it is possible to define
an abstract subject (singleton abstract subject) for a unique concrete subject. However, this
solution is not interesting since it complicates the model with useless concrete-abstract subjects
(resp. concrete-abstract actions and concrete-abstract objects) assignments. Our model proposes
defining directly low level policies in addition to the high level ones specified above. Low level
access control policy rules are expressed as follows:

∀org ∈ Org, ∀s ∈ S,∀a ∈ A,∀o ∈ O,∀c ∈ C,
permission(org, s, a, o, c) ∧ occurs(org, s, a, o, c)
→ permitted(s, a, o)

Low level control policies are useful for many purposes. The first one consists in reducing the
number of active abstract subjects (abstract actions and abstract objects) that might be needed
for expressing some specific policy types. These policies may be expressed only using the corre-
sponding concrete entity (subject, action or object). Also, the CABAC model handles the notion
of exception. For instance, let us consider the following hypothetical access rules from the medical
sector. In Aylmer hospital, there are four different rules specified by the security officer.

(1) Doctors can consult medical records. (2) Doctors can use the laser machine. (3) Bob is
a doctor. And finally, (4) Bob is a doctor in Aylmer hospital who cannot use the laser machine.
Since Bob is the only individual to which this last rule applies, we should avoid creating an abstract
subject for this rule only. By the same token, the laser machine is also a concrete object, hence we
should avoid creating a new abstract object for it. Thus, exceptions are handled by specifying low
level policies that are defined directly over concrete entities. The rules above can be more precisely
specified as follows:

• permission(Aylmer hospital, doctor, consult,medical records, default); meaning that doc-
tors, in Aylmer hospital, are allowed to read medical records in all circumstances.

• permission(Aylmer hospital, doctor, use, laser machine, default); doctors are also allowed
to use the laser machine in all circumstances in Aylmer hospital.

• assign subject(Aylmer hospital, Bob, doctor); meaning that abstract subject doctor is as-
signed to Bob for allowing him to get all privileges of doctors.

• prohibition(Bob, use, laser machine, default); i.e. Bob is not allowed to use the laser ma-
chine in any circumstances. This policy is a low level policy that is defined only over concrete
entities (subject, action and object).

So far, we have shown how to represent access control policies that are exceptions. However,
there are many other policies that cannot be precisely specified using only high or low level entities,
namely all the policies that deal with different levels of abstraction. As an example, in a policy
we may specify that in Aylmer hospital doctors are not allowed to consult Topsecret H1N1 99.doc.
Notice here that the subject (doctor) and action (consult) are abstract entities whereas the object,
the H1N1 file, is at the concrete level. This is expressed as follows:

prohibition(Aylmer hospital, doctor, consult, Topsecret H1N1 99.doc, default)

6

As another example: “nurses are not allowed to access room18”. In this rule there is one
abstract entity (i.e. nurses) and two concrete entities (i.e. action access and specific object
room18). Combinations of the different levels are considered so that rules may be expressed with
the different levels of entity abstraction.

By combining different levels of entities it becomes possible to express policies at different levels
of abstraction as described in the following section.

5 Specifying levels of policies and contexts

5.1 Expressing policies at different levels

In Sections 3 and 4, we have introduced two distinct levels for specifying policies. The first contains
concrete policies such as those defined within the DAC model and the other specifies policies only
at the abstract level as in the OrBAC model and partially in the RBAC model.

Since we want to be able to express policies at different levels, we need to specify the generic
function that generates concrete policies from abstract ones. This generic function , which gener-
alizes the corresponding function defined in OrBAC [1], is as follows:

∀org ∈ Org, ∀s ∈ S, ∀a ∈ A,∀o ∈ O,∀as ∈ S ∪AS,∀aa ∈ A ∪AA,∀ao ∈ O ∪AO,∀c ∈ C
permission(org, as, aa, ao, c) ∧ assign subject(org, s, as) ∧ assign action(org, a, aa)∧
assign object(org, o, ao) ∧ occurs(org, s, a, o, c)
→ permitted(s, a, o)

Notice that this function should be carefully used since assign subject(org, s, as) (resp. as-
sign action(org, a, aa), assign object(org, o, ao)) is included in the derivation only if as /∈ S
(resp. aa /∈ A, ao /∈ O). This yields eight possibilities, the ones shown in Table 1, of which four
are:

• Case 1: ∀org ∈ Org, ∀s ∈ S, ∀a ∈ A,∀o ∈ O,∀c ∈ C,
permission(org, s, a, o, c) ∧ occurs(org, s, a, o, c)
→ permitted(s, a, o)

• Case 2: ∀org ∈ Org, ∀s ∈ S, ∀a ∈ A,∀o ∈ O,∀as ∈ AS, ∀c ∈ C,
permission(org, as, a, o, c) ∧ assign subject(org, s, as) ∧ occurs(org, s, a, o, c)
→ permitted(s, a, o)

• Case 3: ∀org ∈ Org, ∀s ∈ S, ∀a ∈ A,∀o ∈ O,∀aa ∈ AA,∀c ∈ C,
permission(org, s, aa, o, c) ∧ assign subject(org, s, as)∧
assign action(org, a, aa) ∧ occurs(org, s, a, o, c)
→ permitted(s, a, o)

• Case 8: ∀org ∈ Org, ∀s ∈ S, ∀a ∈ A,∀o ∈ O,∀as ∈ AS, ∀aa ∈ AA,∀ao ∈ AO,∀c ∈ C,
permission(org, as, aa, ao, c) ∧ assign subject(org, s, as)∧
assign action(org, a, aa) ∧ assign object(org, o, ao) ∧ occurs(org, s, a, o, c)
→ permitted(s, a, o)

The last case corresponds to specifying policies in the OrBAC model [1] where policies are only
specified at the abstract level over abstract entities (subjects, objects and actions). The second

7

case Subject (s)/ action (a)/ object (o)/ Corresponding model
number abstract subject

(as)
abstract action
(aa)

abstract object
(ao)

case 1 s a o DAC, MAC, CW, CABAC
case 2 as a o RBAC, CABAC
case 3 s aa o CABAC
case 4 as aa o CABAC
case 5 s a ao CABAC
case 6 as a ao CABAC
case 7 s aa ao CABAC
case 8 as aa ao OrBAC, CABAC

Table 1: Different levels of security policy rules specification by CABAC and comparison with
existing models

case corresponds to specifying policies in the RBAC [21] model except that the context is always
set to default since contexts are not expressed in RBAC.

5.2 First Comparison with existing models

The CABAC model is more flexible than previously known models since it can specify policies
either at the abstract level or at the concrete level. It is also possible to combine policies at the
two levels over different entities when considering different levels of abstractions. Table 1 presents
the different possibilities for the combined use of the two levels.

Table 1 shows that CABAC is the only access control model that can specify access control pol-
icy rules at all levels of abstraction. The concrete rules are deployed in PEPs (Policy Enforcement
Points). These PEPs may be any security component. Examples are firewalls, intrusion detection
systems, SBCs (Session Border Controllers), etc. that are deployed in computer networks, reference
monitors that deploy access control lists in operating systems or any other hardware or software
security components for accessing buildings.

Some access control models specify policies at the abstract level when dealing with organization
entities whereas others specify the policies at the concrete level. In OrBAC [1] access rules are
specified at the abstract level, and privileges are expressed over abstract entities, namely abstract
subjects, abstract actions and abstract objects. Conflicts are detected and resolved at the abstract
level, and the concrete level is derived from the abstract level. In CABAC, instead, both levels can
be explicitly and directly specified, also conflicts can be detected and resolved at both levels. As
well, levels can be freely mixed as we show in several examples.

RBAC [21], on the other hand, groups functionally identical subjects in order to reduce manage-
ment overhead. However, the different policies within the RBAC model are expressed over abstract
subjects, concrete actions and concrete objects. The only derivation from the abstract level to the
concrete level is done over roles while this derivation is generalized to actions and objects within
the OrBAC model.

Section 10 will contain a final comparison of CABAC with OrBAC and RBAC, including ex-
amples.

5.3 Different types of contexts

The different privileges apply when the corresponding constraints are satisfied. As presented in
Section 3, the first three constraints correspond to separate conditions over subject, action and
object. However, the fourth constraint in the condition part of the rule is expressed as a constraint
over subject, action and object. This constraint corresponds to a set of elementary contexts that
must be satisfied for applying a privilege, each of which is defined over a subject, action and object.
In the following, we present four different context types:

8

• Temporal context specifies the time constraint that must be satisfied for the subject to be
granted with the requested access. We suppose that we have a trusted “Clock” that provides
us with the accurate time. The following attributes may be obtained from “Clock”: Time,
Weekday, Monthday, Month, Monthweek, Yearweek. Two other basic functions, over the
time set T , are used to express the temporal context: from time(t) and until time(t) where:

– ∀org ∈ Org, ∀s ∈ S, ∀a ∈ A,∀o ∈ O
∀t, t′ ∈ T, occurs(org, s, a, o, from time(t))← Time(Clock, t′) ∧ t′ ≥ t

– ∀org ∈ Org, ∀s ∈ S, ∀a ∈ A,∀o ∈ O
∀t, t′ ∈ T, occurs(org, s, a, o, until time(t))← Time(Clock, t′) ∧ t′ ≤ t

Using the basic temporal contexts, we can define composed contexts by combining elementary
contexts as specified in Section 5.4 below. For instance, let us consider the visitinghours
context defined in the following security policy rule: “Receptionists can locate patients during
visiting hours where visiting hours temporal context corresponds to the morning hours from
11h00 to 12h00, only on the first two Mondays of each month”. This temporal context is
expressed as follows:

visitinghours = from time(11h00) ∧ until time(12h00) ∧ on weekday(Monday)∧
(on monthweek(1) ∨ on monthweek(2))

• Spatial context expresses the spatial location constraints of the subject and object. This
context defines the constraints, depending on the subject or object location, that should be
satisfied in order to grant the requested access privilege. We assume that we have a trusted
localization system (GPS or an access control system to a building and the different places
within the building) that indicates the effective position of the subject or the object. Many
spatial contexts may be defined. For instance, we may define a country, continent, town,
street address, emergency ward of a hospital, etc. as a spatial context. We use different
attributes for this context such as country, town, ward, street, etc. For example, to specify
that a subject s (or object o) must be located in the emergency ward, we use the predicate
is located to get this information from the localization system.

Let us express the following context condition: “the doctor and the patient must be in the
same ward”. This context may be used in a hospital to allow doctors to prescribe medication
to a patient if doctor and patient are in the same ward. In this example, are in same ward
might be defined as follows:

occurs(hospital, s, a, o, are in same ward)← in ward(s, w) ∧ in ward(o, w)
where in ward(s, w)← is located(GPS, s, w) and in ward(o, w)← is located(GPS, o, w)
Notice that we assume that our GPS contains a sophisticated function that returns the exact
ward of a staff member based on her geolocalization; also, we take the patient to be the
object of the prescription action.

• Knowledge context depends on information that may be provided by the information system
such as the information stored in the information system database. For instance, “a doctor
can operate a patient only if he has at least 19 years of experience”. The corresponding
context has 19 years experience may be expressed as follows in hospital:

∀s ∈ S,∀a ∈ A,∀o ∈ O
occurs(hospital, s, a, o, hasmorethan 19 years experience)
← experience(s, years) ∧ years ≥ 19

where experience(s, years) is a basic function that retrieves from the information system
database the number of practice years of subject s.

• Historical context depends on the actions that have already been performed. For example,
some access requests cannot be granted unless some actions are performed before the request
is presented. A database logging the different actions (with the corresponding subjects,
objects and timestamps) is used for this goal. For instance, a doctor cannot operate a
patient unless he has already diagnosed him. The corresponding context has diagnosed of
this rule may be expressed as follows:

9

∀s ∈ S,∀a ∈ A,∀o ∈ O,
occurs(hospital, s, a, o, has diagnosed)
← log(s, diagnose, o)

where log(s, diagnose, o) is a dependent predicate that says that action diagnose has already
been performed by s over o. The different actions that are performed are stored in an event
log database.

Of course, context types are not limited to the the ones just mentioned. Our examples have
given an idea of what can be done by using different context notions. Other context notions can
be defined including weather conditions, urgency considerations when dealing with accidents in
hospitals or threat contexts when dealing with intrusions in information systems.

5.4 Combining Contexts

Elementary context functions can be combined by using standard propositional logic operations
(∧, ∨ and ¬).
For example, the policy that says: In Aylmer hospital, nurses may consult medical records during
working hours and only in emergency situations may be expressed as follows:

permission(Aylmer hospital, nurse, consult,medical record, working hours emergency)

where:
occurs(Aylmer hospital, Alice, read,H1N1 Bob 99.doc, working hours emergency)
← from time(8h00) ∧ until time(18h00) ∧ ¬on weekday(Saturday)∧
¬on weekday(Sunday) ∧ emergency(H1N1 Bob 99.doc)

In this example, Alice is a nurse in Aylmer hospital (i.e. assign subject(Aylmer hospital, Alice,
nurse)), read is an action of type consult (i.e. assign action(Aylmer hospital, read, consult)),
H1N1 Bob 99.doc is a file that belongs to medical record (i.e. assign object(Aylmer hospital,
H1N1 Bob 99.doc, medical record)) and emergency(file) is a predicate that is true if the corre-
sponding file is that of a patient that is in an emergency case.

6 Hierarchies

Hierarchies on abstract entities (abstract subjects, abstract actions and abstract objects) are rep-
resented in our model. Every hierarchy corresponds to a partial order over the different abstract
entities (subjects, actions and objects).

6.1 Abstract subject hierarchies

The notion of hierarchy is introduced within the RBAC model [21] as a basic concept of privilege
inheritance. Hierarchies are a natural manner of structuring roles to reflect the organization main
flow of responsibilities and authorities. Hierarchy of roles in OrBAC is the same as that of RBAC
but is expressed using relation predicates to inherit privileges from a role by its sub role. In RBAC
and OrBAC models, all privileges are propagated from the general roles to senior roles.

If we consider the RBAC or OrBAC model and the abstract subject hierarchy presented in
Figure 1, then all privileges of a role are inherited by its senior role (or sub role). For example,
all permissions assigned to nurses are inherited by the sub roles head nurse and then clinical staff
manager. In other words, all privileges that are assigned to a role are automatically inherited by all
its senior roles (or sub roles) in the hierarchy. The inheritance is always going down in such models.
However, some organizations may need to specify that the inheritance of permissions will go down
in hierarchies and the inheritance of prohibitions takes the other direction. In the above hierarchy
example, we may wish to specify that all prohibitions that apply to clinical staff manager also
apply to all its corresponding junior roles in the hierarchy Clinical Staff. Therefore, the direction
of the propagation of privileges should be specified.

The concept of policy propagation direction is modeled by using a propagation policy relation
that we call prop that is defined over domains Org × Priv × H × D, where Org denotes the

10

Clinical staff

Nurse Doctor

PediatristPsychanalistHead nurse

Head doctor

Clinical staff

manager

Figure 1: Abstract subject hierarchy H ClinicalStaff.

set of organizations, Priv denotes the set of privileges (i.e. permission, prohibition, obligation,
recommendation and faculty), H denotes the set of hierarchies –H ClinicalStaff is such a hierarchy
example– and D denotes the set of the propagation directions: {UP, DOWN}.

For our example, we may specify policy propagation as follows:

prop(Aylmer Clinic, permission,H ClinicalStaff,DOWN)

The different relations that are used to specify hierarchies within the CABAC model are ex-
pressed as follows. We denote the hierarchy between abstract subjects by using the predicate
sub abs subject(org, hs, as1, as2) meaning that in organization org, abstract subject as1 is a sub-
abstract subject of as2 within hierarchy hs. Therefore, we get the following authorization inheri-
tance cases according to the hierarchy:

• DOWN case: ∀org ∈ Org, ∀as1 ∈ AS,∀as2 ∈ AS, ∀aa ∈ AA,∀ao ∈ AO,∀c ∈ C,∀hs ∈ HS,
where HS is a set of hierarchies over abstract subjects:

sub abs subject(org, hs, as1, as2) ∧ prop(org, authorization, hs,DOWN)∧
authorization(org, as2, aa, ao, c))
→ authorization(org, as1, aa, ao, c))

• UP case: ∀org ∈ Org, ∀as1 ∈ AS,∀as2 ∈ AS, ∀aa ∈ AA,∀ao ∈ AO,∀c ∈ C,∀hs ∈ HS,
sub abs subject(org, hs, as1, as2) ∧ prop(org, authorization, hs, UP)∧
authorization(org, as1, aa, ao, c))
→ authorization(org, as2, aa, ao, c))

6.2 Abstract action hierarchies

Accordingly, we can also define abstract action and abstract object hierarchies. The abstract
action hierarchy is defined by using the predicate sub abs action(org, ha, aa1, aa2) meaning that
in organization org, abstract action aa1 is a sub abstract action of aa2 within abstract action
hierarchy ha.

In the following example, we specify hierarchies within organization CA GS (CA Global Switch).

Let us consider the update, or configuration command, of which there can be several subtypes
as presented in Figure 2. This action consists of updating the configuration of computer and
network security devices within an operator. This hierarchy describes a configuration command
of which there can be two types: (i) GUI Configure Command or (ii) Configure Command Line.
Again, there can be two types of each one of the last two abstract actions (i.e. Secured Configure
Command and Unsecured Configure Command), etc.

We consider two directions in this hierarchy. The first is UP which says that any permission
of an abstract action is inherited by its junior abstract action (if it is present). The second corre-
sponds to the DOWN direction which says that any prohibition of an abstract action is inherited
by its senior abstract action (if it exists).

11

Configure

Command

GUI Configure

Command

Configure

Command Line

Web Interface

Configure

Command

Device Manager

Configure

Command

Secured

Configure

Command

Unsecured Configure

Command

Figure 2: Abstract action hierarchy H ConfigureCommand.

The two hierarchy propagations for this example can be specified as follows:
prop(CA GS, permission,H ConfigureCommand, UP)
prop(CA GS, prohibition,H ConfigureCommand,DOWN)

Meaning that in organization CA GS, if a subject or an abstract subject is permitted to perform
an abstract action on an object or an abstract object, then she has the permission to perform its
junior abstract action on the corresponding object or abstract object. As an example, if it is
permitted to X (subject or abstract subject) to perform an Unsecured Configure Command on
Firewall FW then X is allowed to perform both Web Interface Configure Command and Configure
Command Line and so on.

However, if X (a subject or an abstract subject) is prohibited from performing an abstract
action on an object (or an abstract object) then X is prohibited to perform its senior abstract
action on the corresponding object or abstract object. As an example, if it is prohibited for X
(subject or abstract subject) to perform any configuration on Firewall FW (or any security device),
then X is prohibited from performing any configuration command, in the whole hierarchy presented
in Figure 2, on the corresponding FW (or any security device).

6.3 Abstract object hierarchies

An abstract object hierarchy can be defined by using the predicate sub abs object(org, ho, ao1, ao2)
meaning that in organization org, abstract object ao1 is a sub abstract object of ao2 within abstract
object hierarchy ho.

Let us consider the following example related to a Datacenter within the global switch of the
company CA:
We define two hierarchy propagations for this example:

prop(CA GS, permission,H DataCenter, UP)
prop(CA GS, prohibition,H DataCenter,DOWN)

In case of UP propagation, a permission of an abstract object is inherited by its junior abstract
object if it is present. And in case of DOWN propagation, then a prohibition of an abstract object
is inherited by its senior abstract object if it is present.

So a subject or an abstract subject is permitted to access an abstract object then he/she has
the permission to access its junior abstract object. As an example, if it is permitted to X (subject
or abstract subject) to access the LAN Datacenter then X is allowed to access Telco Datacenter
and Global Switch Datacenter.

However, if X (a subject or an abstract subject) is prohibited from accessing an abstract object

12

Global Switch

Datacenter

Security

Datacenter

Telco

Datacenter

LAN

Datacenter

WAN

Datacenter
IPS, A/Virus

DataCenter

FW

Datacenter

Figure 3: Abstract object hierarchy H DataCenter.

then X is prohibited to access its senior abstract object. As an example, if it is prohibited for X
(subject or abstract subject) to access the Global Switch Datacenter, then X is prohibited from
accessing Telco Datacenter and both WAN and LAN datacenters.

UP and DOWN inheritance, especially if used together, can lead to inconsistency. Such incon-
sistencies can be prevented by using priority rules, a subject that we leave for further work.

7 Dynamic abstract subjects, dynamic abstract actions and
dynamic abstract objects

When specifying high level policies, subjects are statically assigned to predefined subjects. While
this is useful to define static roles as in RBAC [21] or OrBAC [1], some other abstract entities
may be defined dynamically according to specific contexts. For instance, we may want to specify
a rule policy that says that “all subjects in the emergency ward can read all medical records and
cannot prescribe medicine to patients”. In conventional systems, in order to do this it is necessary
to define as many high level policies as there are predefined abstract subjects. We propose the
notion of dynamic abstract subject, which is not defined statically but is dynamically activated
using contexts defined over subjects. Once a dynamic abstract subject is activated, it will be
automatically assigned to subjects satisfying the corresponding specified context. This is modeled
using the predefined predicates defined below.

− occurs dynamic abs subject is a predicate that is defined over domains Org×S×SC (where
SC is a set of contexts that are defined over domain S). If s is a subject and sc is a context over
subject s then occurs dynamic abs subject(org, s, sc) specifies that context sc is satisfied over
subject s in organization org.

Then the corresponding dynamic abstract subject dassc is implicitly assigned to subject s as
follows:

assign subject(org, s, dassc)← occurs dynamic abs subject(org, s, sc)

We also define two other predicates occurs dynamic abs action (resp. occurs dynamic abs object)
for dynamically activating abstract actions (resp. abstract objects):

− occurs dynamic abs action is a predicate that is defined over domains Org×A×AC (where
AC is a set of contexts that are defined over domain A). If a is an action and ac a context over
action a then occurs dynamic abs action specifies that context ac is satisfied over action a.

The corresponding dynamic abstract action daaac is implicitly assigned to action a as follows:

13

assign action(org, a, daaac)← occurs dynamic abs action(org, a, ac)

− occurs dynamic abs object is a predicate that is defined over domains Org×O×OC (where
OC is a set of contexts that are defined over domain O). If o is an object and oc a context over
object o then occurs dynamic abs object(org, o, oc) specifies that context oc is satisfied over object
o.
The corresponding dynamic abstract object daooc is implicitly assigned to object o as follows:

assign object(o, daooc)← occurs dynamic abs object(org, o, oc)

Notice that DAS ⊆ AS, DAA ⊆ AA and DAO ⊆ AO where DAS is the set of activated
dynamic abstract subjects, DAA is the set of activated dynamic abstract actions and DAO is
the set of activated dynamic abstract objects. AS denotes the set of all abstract subjects (i.e.
activated dynamic abstract subjects and statically defined abstract subjects), AA the set of all
abstract actions and AO the set of all abstract objects.

Dynamic abstract subjects (but not objects nor actions) have been implemented in at least one
commercially available system: CA’s Embedded Entitlement Manager (CA-EEM) [9].

8 Policy rules revocation

The need for policy revocation Most access control models such as RBAC or OrBAC only
specify role assignment to subjects and rarely specify revocation, which in practice is performed
by administrators at local sites. We explicitly introduce the notion of revocation in CABAC in
order to make it possible to revoke an abstract subject from a subject (respectively an abstract
action from an action and an abstract object from an object) statically or dynamically. The
notion of session is used within the RBAC model by which a user, after the authentication phase,
activates the different roles that are necessary to perform specific tasks. However, neither RBAC
nor OrBAC model revocation of already assigned roles from subjects. This notion is useful and
should be taken into account by modern access control models. For instance, in a dynamic system
that faces intrusions, some subjects, which play roles of http servers, may be attacked. In such
cases, the deployed security policy should be modified as long as the threat remains present. As
a solution, some prohibitions or obligations such as shutting down http servers (meaning that all
http servers should be stopped) could be performed. This may be done by adding the following
abstract rule using the above specification

obligation(LRSI Lab, http server, shut down, http daemon, http threat)

Using the above rule, all http servers within the LRSI Lab would be shut down when one of them is
attacked. A more conservative solution would be to stop only the attacked server. This can be done
by revoking the attacked server (let us call the attacked server marasai) from http abstract subject.

revoke subject(LRSI Lab,marasai, http server)
However, as the abstract subject assignment is performed either manually by the administrator

or automatically (using dynamic subjects), the revocation may also be done manually by the ad-
ministrator (as in the above specification) or automatically based on contexts. After revoking the
web server marasai from the abstract subject http server, one can add a concrete rule allowing us
to stop the marasai http server without generalizing the action of stopping all http servers. The
concrete obligation rule to stop the attacked server may be specified as follows:

obligation(LRSI Lab,marasai, killall, http process Unix id, http threat)

Notice that one should verify that the corresponding dæmon process is actually stopped. In
addition, further steps of verification may be recommended if other functionalities are threatened
by the attack. In this case, a more in depth verification process should be performed for further
actions that allow us to reduce (or stop definitively) the impact of the threat. This will be discussed
in forthcoming papers.

14

Specifying revocation in CABAC Specifying revocation is quite similar to specifying the
assignment of abstract entities to concrete entities. We define two different methods for specifying
revocation. The first method is static and consists in revoking the corresponding abstract entity
from the concrete entity. The second method is dynamic as in the above example.

In CABAC, the revocation of an abstract subject from a concrete subject is performed using
the ternary relation predicate revoke subject that is defined over domains Org × S × AS. If org
denotes an organization, s a subject and as an abstract subject, then revoke subject(org, s, as)
means that in organization org, subject s is revoked from the abstract subject as.

Static revocation of abstract actions from concrete actions and of abstract objects from concrete
objects can be specified similarly, and is left as an exercise for the reader.

However, as shown in the previous example, a modern access control model should be flexible
enough to evolve according to the current status of the controlled system. This situation has
motivated us to introduce the notion of dynamic revocation within the CABAC model.

The dynamic revocation of abstract entities from concrete entities can be also specified using
first order logic taking advantage of contexts expression, meaning that the corresponding rules
are updated according to the current context with relation to the security policy that is defined
dynamically.

A dynamic revocation of an abstract subject from a concrete subject is expressed using the
relation predicate revoke subject(org, s, as) that is dynamically activated using the same relation
predicate occurs dynamic abs subject defined in Section 7. As for dynamic abstract subjects
assignment, the revocation of the corresponding abstract subject dassc is implicitly revoked from
subject s as follows:

revoke subject(org, s, dassc)← occurs dynamic abs subject(org, s, sc)

In the same manner, we can express dynamic revocation of abstract actions (resp. abstract objects)
from concrete actions (resp. concrete objects):

revoke action(org, a, daaac)← occurs dynamic abs action(org, a, ac)

revoke object(org, o, daooc)← occurs dynamic abs object(org, o, oc)

9 Specifying constraints and organizational policies

Constrained CABAC adds the concept of constraint to the basic model presented in the previous
sections. The concept of constraint is very important in the CABAC model, as it must be in
any access control model that has to specify accurate policies according to security requirements
that are defined at the organizational level. For example, one can find in practice constraints on
the cardinality of roles within an organization. Consider the constraint specifying that only one
individual (concrete subject) within an organization is authorized to be department head. This is
a cardinality constraint over a role, or an abstract subject in our terminology. It can be specified
in CABAC as follows :

∀s ∈ S, ∀s′ ∈ S, (assign subject(CS Department, s, department head)
∧(CS Department, s′, department head))→ s = s′

Other constraints such as separation of duties and role cumulation are also considered in our
model. Notice that these constraints are taken into account within the RBAC model [21]. How-
ever, while RBAC considers only constraints over roles, in constrained CABAC we can specify
constraints over abstract actions and abstract objects. As an example of a constraint over abstract
objects, we may express a policy that says that two different abstract objects such as a network
device and local equipment in organization CS Department cannot be assigned the same concrete
object:

∀o ∈ O,∀o′ ∈ O, (assign object(CS Department, o, net device)
∧assign object(CS Department, o′, local equipment))→ o 6= o′

15

Similarly, we may specify constraints over abstract subjects or abstract actions.
Also, we may express other constraints such as separation of duty policies, as shown in the

following example:

SoD(Hospital, doctor, {diagnose, operate}1, patient)

meaning that in organization Hospital, abstract subject doctor is allowed to perform only one
action, either diagnose or operate, on a patient.

Similarly, we may specify that in organization Hospital a doctor can consult at most two abstract
objects in a set of three:

Limit(Hospital, doctor, consult, {medical record, emergency record, salary record}2)

By using similar concepts, we can specify other organizational policies such as Chinese Wall.
Notice that constraint specifications in addition to permissions, obligations and privileges may

lead to inconsistencies. These inconsistencies should be detected and then resolved. We have
already discussed a method to detect similar anomalies using typing systems [2]. However, this
method is limited to permissions and prohibitions. More general methods are being investigated
and will be discussed in future work.

10 Comparison with RBAC and OrBAC

In this section, we complete our brief comparison of the CABAC model with the RBAC and Or-
BAC models. Since we know that OrBAC is an extension of RBAC, most of the comparison will
be with OrBAC, although RBAC will also be mentioned. The comparison is based on some basic
examples that will show the advantages of CABAC, most importantly a more synthetic style. We
focus our examples on the usefulness of dynamic entity specifications and hierarchy directions.
Other elements of comparison can be found in the examples of the previous sections.

10.1 Example 1: Compact specification style

Let us consider the following three policy rules:
Security technicians and security managers that are in the security datacenter are allowed to:

• perform secured configure command on all security devices

• use the emergency telephone line

• write a report about the physical status of the security devices.

In the example, Serge will be a security technician in organization CA and Bob will be a security
manager.

10.1.1 Specification of the policy with the CABAC model

The above security policy is specified as follows in CABAC:
− assign subject(CA,Serge, technician);

meaning that Serge plays the role of technician in organization CA,
− assign subject(CA,Bob,manager);

meaning that Bob is a manager in organization CA,
− ∀s ∈ S where S is the set of subjects in organization CA (all staff);
− occurs dynamic abs subject(CA, s, SecTM inSecDC)
← (assign subject(CA, s, Sec Manager) ∨ assign subject(CA, s, Sec Technician))
∧in DC(CA, s, Sec Datacenter);

meaning that in organization CA, the context “SecTM in SecDC” is true for s if
either s is a security manager or s is a security technician and s is in the Security Datacenter of
organization CA.

16

In CABAC, it is sufficient to specify the rule that assigns dynamically the dynamic abstract
subject Dynamic configurer to subject s as follows:

∀s ∈ S;
assign subject(CA, s,DynConfigurer SecTMinSecDC))
← occurs dynamic abs subject(CA, s, SecTMinSecDC)

After this, each of he above three rules can be directly specified in a CABAC rule as follows:
−permission(CA,DynConfigurer SecTMinSecDC, SecuredConfigureCommand, sec device, default)
−permission(CA,DynConfigurer SecTMinSecDC, use, emergency line, default)
−permission(CA,DynConfigurer SecTMinSecDC,write, report, default)

Note that “default” corresponds to the default context which is always true.
In conclusion, to specify our example we need in CABAC one rule for dynamic assignment and

one rule for each permission.

10.1.2 Specification of the policy with OrBAC model

In OrBAC, the above policy can be defined as follows:
− empower(CA,Serge, technician),
− empower(CA,Bob,manager),

These two rules correspond to the first two rules in the previous section. We then need six rules
for the permissions:

− permission(CA,Sec Technician, SecuredConfigureCommand, sec device, inSecDC)
− permission(CA,Sec Technician, use, emergency line, inSecDC)
− permission(CA,Sec Technician,write, report, inSecDC)
− permission(CA,Sec Manager, SecuredConfigureCommand, sec device, inSecDC)
− permission(CA,Sec Manager, use, emergency line, inSecDC)
− permission(CA,Sec Manager, write, report, inSecDC)

More in general, n natural language rules such as the ones defined above can be specified
in CABAC with n + m formal rules, where m is the number of rules that handle the dynamic
assignment of abstract subjects to concrete subjects (m = 1 in our example). By contrast, r×n×m
rules are necessary using the ORBAC or RBAC models, where r corresponds to the number of
roles in consideration. In our case r = 2 since two roles: security technician and security manager
are considered in this policy.

Therefore, the CABAC formalism is much more synthetic and aligned with the intuitive re-
quirements than the RBAC or OrBAC formalisms.

10.2 Example 2: UP and DOWN inheritance

Let us consider the hierarchy example presented in Section 6.2 (Figure 2) and assume that we have
the following policy rules:

• Technicians are prohibited to perform unsecured configure command on firewalls in all cir-
cumstances.

• Technicians are permitted to perform secured configure command on firewalls in all circum-
stances.

Also this security policy specifies that all abstract actions on the paths from configure command
to secured configure command within the hierarchy of Figure 2 are authorized, otherwise it would be
not possible to perform the secured configure command at the bottom of the hierarchy. However, it
is forbidden to perform the unsecured configure command in all circumstances. Therefore, abstract
action unsecured configure command is forbidden to be performed by Technicians whereas all other
abstract actions are allowed to be performed by security technicians. This is what exactly should
be specified by the security policy.

17

10.2.1 Specification of the policy with the CABAC model

The policies of Example 2 are modeled as follows in CABAC:

H ConfigureCommand Hierarchy specification
A sub abstract action (senior abstract action) is specified using the predicate sub abstract action:
− sub abstract action(CA,H ConfigureCommand,GUIConfigureCommand,ConfigureCommand);

meaning that in organization CA, GUIConfigureCommand is a sub abstract action of ConfigureCommand
within hierarchy H ConfigureCommand.

The different derivations of hierarchies of Figure 2 corresponds to the following statements:
− sub abstract action(CA,H ConfigureCommand,GUIConfigureCommand,
ConfigureCommand)
− sub abstract action(CA,H ConfigureCommand,ConfigureCommandLine,
ConfigureCommand)
− sub abstract action(CA,H ConfigureCommand,DeviceManagerConfigureCommand,
GUIConfigureCommand)
− sub abstract action(CA,H ConfigureCommand,WebInterfaceConfigureCommand,
GUIConfigureCommand)
− sub abstract action(CA,H ConfigureCommand, SecuredConfigureCommand,
WebInterfaceConfigureCommand)
− sub abstract action(CA,H ConfigureCommand, SecuredConfigureCommand,
DeviceManagerConfigureCommand)
− sub abstract action(CA,H ConfigureCommand, SecuredConfigureCommand,
ConfigureCommandLine)
− sub abstract action(CA,H ConfigureCommand, UnsecuredConfigureCommand,
WebInterfaceConfigureCommand)
− sub abstract action(CA,H ConfigureCommand, UnsecuredConfigureCommand,
ConfigureCommandLine)

The exact security policy of Example 2 is defined by using the following rules:
− prop(CA, permission,H ConfigureCommand, UP)
− prop(CA, prohibition,H ConfigureCommand,DOWN)
− permission(CA, Technician, SecuredConfigureCommand, FW, default)
− prohibition(CA, Technician, UnsecuredConfigureCommand, FW, default)

10.2.2 Specification of the policy in OrBAC and RBAC

In the RBAC or OrBAC models, there is DOWN propagation. Let us see what this means for our
example, concentrating first on OrBAC and its specification language. We can try to specify the
policy of Example 2 as follows: First of all, we specify the hierarchy of Fig. 2 by using statements
such as:
− sub activity(CA,GUIConfigureCommand,ConfigureCommand)
− sub activity(CA,ConfigureCommandLine, ConfigureCommand)
− ...
The policy rules can be then specified:

(i)permission(CA, Technician,ConfigureCommand, FW, default)
(ii)prohibition(CA, Technician, UnsecuredConfigureCommand, FW, default)

Note that, however, from rule (i) and from the default DOWN propagation in the configure
command hierarchy, technicians will be allowed to perform the unsecured configure command
since the unsecured command view derives all the privileges from its junior abstract actions
(ConfigureCommand → ConfigureCommandLine → UnsecuredConfigureCommand is such
an hierarchy propagation from ConfigureCommand to UnsecuredConfigureCommand). Hence,
we derive rule (iii) from rule (i) and the hierarchy as follows:

(iii)permission(CA, Technician, UnsecuredConfigureCommand, FW, default)
This is not what is specified in the original security policy set and in fact rule (ii) is opposite

18

to rule (iii). Another solution could be to define all privileges on each view within the hierarchy
but this does not solve the issue since the privileges are always propagated down and hence can
generate undesired conflicts. RBAC, on the other hand, can specify hierarchies only on roles. In
other words, Example 2 appears to be out of the reach of OrBAC or RBAC.

11 Conclusion

We have introduced in this paper CABAC, a new access control model that allows expressing
policies at different levels of abstraction. CABAC extends previous models, in particular RBAC
and OrBAC, by making it possible to describe policies in terms of combinations of abstract and
concrete subjects, objects and actions. We have shown how temporal, spatial, knowledge, and
historical contexts, as well as combinations of them, can be specified in CABAC (Section 5).
Mechanisms for policy propagation through abstraction hierarchies are available, and are presented
in Section 6. In addition, the model provides the ability to assign dynamically abstract entities to
concrete entities (Section 7). This allows specifying dynamic policies that can change according to
the current state of the environment. By these characteristics, CABAC generalizes and formalizes
what has been implemented in at least one leading commercial access control tool, CA-EEM (also
called CA-eIAM) of CA Technologies. In practical terms, CABAC offers the ability to specify
individual and environment-depending policies as exceptions, thus simplifying policy management
by the security officer. Furthermore, the CABAC model includes primitives to automatically
revoke privileges and automatically reassign them (Section 8). This makes it possible to plan for
responses to dynamically appearing and disappearing intrusions and threats, responses that are
usually implemented manually in present systems. To our knowledge, no other model combining
all such characteristics has been described in the literature. The formal semantics of the CABAC
model is specified in first-order predicate logic.

Future work includes investigating the policy conflicts (also called inconsistencies) that can be
generated in CABAC, as well as methods for their resolution. An easily seen example of such
conflicts is the case where a security officer expresses a permission and a prohibition for a subject
to perform an action on an object. Although obvious instances of such conflicts are probably
rare, hidden conflicts can arise by means of the mechanisms provided by the model. In [2], a
typing system is presented to detect inconsistencies between permissions and prohibitions within
security policies that are expressed using a CABAC formalism simpler than the one we present
in this paper. Propositions for solving conflicts in access control policies were also presented in
[3, 6, 7, 8, 12]. Related work on managing inconsistencies in the presence of obligations may
be found in [18]. However, our model with its flexible syntax has the potential of generating
many types of inconsistencies particularly when dealing with dynamic assignment and revocation
of entities that can create new policies or delete existing policies in real time.

Moreover, we plan to introduce a formal language for expressing recommendations and faculties.
Recommendations are used for expressing policies to warn network and computer administrators
about new available software patches, for example. We also plan to investigate the inclusion
in CABAC of a formal model for delegation, a very useful but also dangerous mechanism for
transferring privileges. Delegation may also lead to conflict situations, which in their turn will
have to be detected and resolved.

12 Acknowledgments

This research was funded in part by grants of NSERC-CRD and of CA Technologies. The authors
are indebted to the anonymous referees for suggestions that have led to the improvement of the
paper.

References

[1] A. AbouElKalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte, A. Miège,
C. Saurel, and G. Trouessin. Organization Based Access Control. In Proceedings of IEEE 4th

19

International Workshop on Policies for Distributed Systems and Networks (POLICY 2003),
pages 120–134, Lake Come, Italy, June 2003.

[2] K. Adi, Y. Bouzida, I. Hattak, L. Logrippo, and S. Mankovskii. Typing for conflict detection
in access control policies. In E-Technologies: Innovation in an Open World. Proc. of the 4th
Intern. Conf. MCETECH 2009, pages 212–226. Springer, May 2009.

[3] S. Benferhat, R. ElBaida, and F. Cuppens. A stratification-based approach for handling
conflicts in access control. In SACMAT2003, pages 189–195, 2003.

[4] E. Bertino, P. A. Bonati, and E. Ferrari. Trbac: A temporal role-based access control model.
ACM Transactions on Information and System Security, 4(3):191–223, August 2001.

[5] E. Bertino, B. Catania, M. L Damiani, and P. Perlasca. Geo-rbac: a spatially aware rbac.
ACM Transactions on Information and System Security (TISSEC), 10(1), February 2007.

[6] E. Bertino, S. Jajodia, and P. Samarati. Supporting Multiple Access Control Policies in
Database Systems. In IEEE Symposium on Security and Privacy, pages 94–107, 1996.

[7] Y. Bouzida. Managing security rules conflicts. European Patent Number 07 114 047.9, August
2007.

[8] Y. Bouzida. Online security rules conflict management. European Patent Number 07 114
046.1, August 2007.

[9] Computer Associates. Computer Associates Embedded Entitlement Manager (CA-EEM).
http://www.ca.com/us/products/product.aspx?id=5423, 2009.

[10] J. Crampton and H. Khambhammettu. Delegation in Role-Based Access Control. In 11th
European Symposium on Research in Computer Security (ESORICS’2006), pages 174–191,
September 2006.

[11] F. Cuppens, N. Boulahia-Cuppens, Y. Bouzida, W. Kanoun, and A. Croissant. Expression and
deployment of reaction policies. In IEEE, editor, SITIS Workshop ”Web-Based Information
Technologies & Distributed Systems (WITDS), 2008.

[12] F. Cuppens, N. Cuppens-Boulahia, and M. BenGhorbel. High Level Conflict Management
Strategies in Advanced Access Control Models. Electr. Notes Theor. Comput. Sci., 186:3–26,
2007.

[13] F. Cuppens and A. Miège. Modelling contexts in the Or-BAC model. In Proceedings of the
19th Annual Computer Security Applications Conference (ACSAC 2003), pages 416–427, Las
Vegas, Nevada, USA, December 2003.

[14] D. F. Ferraiolo and R. Kuhn. Role-Based Access Controls. In Z. Ruthberg and W. Polk,
editors, Proceedings of the 15th NIST-NSA National Computer Security Conference, pages
554–563, Baltimore, MD, 13-16 October 1992.

[15] V. Weissman J. Y. Halpern. Using First-Order Logic to Reason about Policies. In 16th IEEE
Computer Security Foundations Workshop (CSFW2003), 2003.

[16] Sushil Jajodia, Pierangela Samarati, and V. S. Subrahmanian. A logical language for express-
ing authorizations. In IEEE Symposium on Security and Privacy, pages 31–42, 1997.

[17] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal role-based access
control model. IEEE Transactions on Knowledge and Data Engineering, 17(1):4–23, January
2005.

[18] H. Kamoda, M. Yamaoka, S. Matsuda, K. Broda, and M. Sloman. Access control policy
analysis using free variable tableaux. IPSJ Digital Courier, 2:207–221, 2006.

[19] B. Lampson. Protection. In 5th Princeton Symposium on Information Sciences and Systems,
pages 437–443, March 1971.

20

[20] J. Park and R. Sandhu. The UCON-ABC Usage Control Model. ACM Transactions on
Information and System Security (TISSEC), 7(1), February 2004.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control
models. IEEE Computer, 29(2):38–47, February 1996.

21

