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ABSTRACT
Signature based intrusion detection systems cannot detect new
attacks. These systems are the most used and developed ones.
Current anomaly based intrusion detection systems are also
unable to detect all kinds of new attacks because they are
designed to restricted applications on limited environment.
Current hackers are using new attacks where neither preven-
tive techniques mainly based on access control nor current
intrusion detection systems can prevent the devastating results
of these attacks against information systems. We enhance
the notion of anomaly detection and we use both neural
networks and decision trees for intrusion detection. Since
these techniques are mainly applicable to misuse detection,
we use our anomaly detection enhancement and improve
these techniques for anomaly detection. Experimental results
demonstrate that while neural networks are highly successful
in detecting known attacks, decision trees are more interesting
to detect new attacks. The proposed methods outperform
previous work in detecting both known and new attacks.

KEY WORDS
Intrusion Detection, Anomaly Detection, Neural Networks,
Decision Trees.

I. INTRODUCTION

Anomaly intrusion detection systems are not well studied or
explored as misuse detection ones. Misuse detection consists in
using patterns of well known intrusions to match and identify
known labels for unlabeled datasets. In fact, many commercial
and open source intrusion detection systems (IDSs) are misuse
based ones. Recently, attackers have explored serious break-
ins to many commercial and government sites where serious
damages have occurred. The different intrusions that have been
used were new. This situation was foreseeable because the
attackers are attempting to develop new attacks forms where
neither misuse detection tools nor access control tools (such
as firewalls) installed in our networks may detect or stop these
new attacks forms.

Anomaly detection, on the other hand, consists in building
profiles of normal behaviors then detecting any deviation of a
new behavior from the learned normal profiles. This definition

(of anomaly detection) is restrictive because only one class
which corresponds to the normal behavior is learned.

In this paper, we extend the definition of anomaly detection
to not only take into account normal profiles but also han-
dle known attacks and explore supervised machine learning
techniques, particularly neural networks and decision trees for
intrusion detection. In fact, decision trees induction algorithm
has proven its efficiency in predicting the different classes of
the unlabeled data in the test data set for the KDD 99 intrusion
detection contest [9]. Since machine learning techniques, gen-
erally, cannot find boundaries between known and unknown
classes, an extension of neural networks and decision trees is
introduced to deal with new unknown anomalies.

The rest of the paper is organized as the following. Section
II presents the state of the art of current anomaly detection
method in general and the limitations of the current anomaly
detection tools that only learn normal behaviors and flag sus-
picion when deviation, from the established normal behavior,
is observed. Based on this state, we enhance the anomaly
detection notion for detecting novel attacks. Section III briefly
presents background of neural networks and an improvement
of this technique to handle new attacks with the different re-
sults obtained for both the standard multilayer neural network
and its enhancement for new attacks detection. In Section
IV, we present decision trees induction algorithm with an
improvement for anomaly detection and the corresponding
results. Finally, Section V concludes the paper.

II. PROBLEM STATEMENT AND MOTIVATION

Anomaly intrusion detection is the first intrusion detection
method that was introduced to monitor computer systems by
Anderson [1] in 1980 and then improved by Denning [6] in
1987. At that time, intrusion detection was immature since
only user behavior and some system events were taken into
account. In fact, this approach consisted in establishing normal
behavior profile for user and system activity and observing
significant deviations of the actual user activity with respect
to the established habitual profile. Significant deviations are
flagged as anomalous and should raise suspicion. This defini-
tion did not take into account the expert knowledge of known
vulnerabilities and known attacks. This is why we enhance the
notion of anomaly detection not only by considering normal



profiles but also by taking into account abnormal behaviors
that are extracted from known attacks.

Since we have knowledge about known vulnerabilities and
their corresponding attacks, we may enhance the anomaly
detection by adding to the learning step the abnormal behavior
corresponding to known attacks. Therefore anomaly detection
would consists in learning all known normal and attack
profiles. Based on this learnt knowledge, anomaly detection
has then to detect whether a new observed profile is normal
or abnormal and its corresponding known attack is determined
or the observed profile is new and therefore it is considered
as a novel unknown behavior. Thereafter, we suggest that a
diagnosis should be done on the observed traffic that has
caused the detection of the new anomaly in order to find out
the reason of this new observation. Thus, if it corresponds to
a new activity that was not seen before it is flagged either as a
normal profile or as a new attack. The new observations with
their real classification would then be considered for further
investigation. We note that the diagnosis of the new observed
behaviors is not our main objective here.

In our knowledge, all the efforts done by different re-
searchers for detecting new attacks in the KDD 99 either
consider unrealistic hypotheses or obtain uninteresting results.
In the following, we recall the different measures that are used
to rank the different proposed methods for this task. We use
this measure to assess our results discussed in Sections III and
IV.

To rank the different results a cost matrix C is defined [7].
Given the cost matrix illustrated in Table I and the confusion
matrix obtained subsequent to an empirical testing process, a
cost per test (CPT) is calculated using the formula given in
Equation (1).

Normal Probing DoS U2R R2L
Normal 0 1 2 2 2
Probing 1 0 2 2 2

DoS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

TABLE I
THE COST PER TEST MATRIX.

CPT =
1
N

5∑
i=1

5∑
j=1

Ci,j ∗ CMi,j (1)

where C corresponds to the cost matrix, N is the number
of instances in the test data set and CM corresponds to the
confusion matrix obtained subsequent to the method that is
used in the classification task.

The accuracy of each experiment is based on the percentage
of successful prediction (PSP) on the test data set.

PSP =
number of successful instance classification

number of instances in the test set
(2)

The different techniques that are applied to the KDD 99 data
sets did not detect unknown attacks as new ones because the

methods used for this task are not anomaly based techniques.
However, they consisted in learning the signatures of the
connections (attacks or normal traffic) using the 41 attributes
composing the different connections. Then the new connec-
tions are compared to the learning data set using the model
constructed during the training phase. We call this technique:
misuse detection by learning because it differs from other
signature based techniques, such as snort, bro, etc., where only
attack signatures are used. On the other hand, it is the role of
the expert to write the different rules using the corresponding
known vulnerabilities.

Based on the above considerations and limitations and
the need to explain the failure of supervised techniques to
detect U2R and R2L attacks, we investigate two supervised
techniques, namely neural networks and decision trees in order
to explain the failure of machine learning techniques in the
KDD 99 contest.

In our experiments, we use the KDD 99 data sets without
altering any sample or considering any new sample as de-
scribed in Table II. The attacks that have any occurrence in
the learning set should be detected as known attacks and others
—those that are absent in the training set and are present in the
test set— are considered as anomalies and should be predicted
as new attacks.

The default supervised algorithms do not deal with unknown
classes. They are interesting since they can generate alarms in
real time at the end of a connection by contrast to unsupervised
techniques that remain unusable for real time intrusion detec-
tion. Separate modules for anomaly and misuse detection may
not be as efficient as a single module with the two techniques
in the same time. These observations have motivated us to
enhance supervised anomaly detection techniques as presented
in the following sections.

In the following, we motivate our research with neural net-
works to compare its results with the best entries. We consider
them also as a cross validation technique with decision trees
for the task of detecting new attacks. While the successful
detection rate of the new U2R attacks is increased, in our
experiments, the R2L attack remains very low. This suggested
us to focus on the transformation done by the MADAM/ID
tool and prove that this transformation is not an appropriate
one. The low detection rate of new R2L attacks is due to
this transformation and not to the enhanced machine learning
algorithms particularly the decision trees induction algorithm.

III. NEURAL NETWORKS

A. Backpropagation technique for intrusion detection

Backpropagation is a neural network learning algorithm.
A neural network is a set of connected units following a
particular topology. Each neuron is described by a unit that
has an input and an output. Two neurons are connected if the
output of one of them is connected to the input of the other.
Each connection in a neural network has a weight associated to
it. The topology of the neural network, the training methodol-
ogy for weights’ adjustment and the connections between the
different neurons define the type of the corresponding neural



Probing (4, 107; 4, 166) DoS(391, 458; 229, 853)
ipsweep(1, 247; 306),
mscan(0; 1, 053),
nmap(231; 84),
portsweep(1, 040; 364),
saint(0; 736),
satan(1, 589; 1, 633).

apache2(0; 794), back(2, 203; 1.098),
land(21; 9), mailbomb(0; 5, 000),
neptune(107, 201; 58, 001),
pod(264; 87), processtable(0; 759),
smurf(280, 790; 164, 091),
teardrop(979; 12), udpstorm(0; 2).

U2R(52; 228) R2L(1, 126; 16, 189)
buffer overflow(30, 22),
httptunnel(0; 158),
guess passwd(53; 4, 367),
loadmodule(9; 2), perl(3; 2),
perl(3; 2), ps(0; 16),
rootkit(10; 13), sqlattack(0; 2),
xterm(0; 13).

ftp write(8; 3), imap(12; 1),
multihop(7; 18), named(0; 17), phf(4; 2),
sendmail(0; 17), snmpgetattack(0; 7, 741),
snmpguess(0; 2, 406), spy(2; 0),
warezclient(1, 020; 0),
warezmaster(20; 1, 602), worm(0; 2),
xlock(0; 9), xsnoop(0; 4).

TABLE II
THE DIFFERENT ATTACK TYPES AND THEIR CORRESPONDING

OCCURRENCE NUMBER RESPECTIVELY IN THE TRAINING AND TEST DATA

SETS.

network. In our study, we are interested in the multilayer
neural networks using the backpropagation learning algorithm
[14]. In a multilayer neural network, there are three kinds of
layers. Each layer contains a set of neurons. The first layer,
called input layer, sets the activation of its neurons according
to the provided pattern in question. The output layer provides
the answer of the network. A multilayer network may contain
one or many hidden layers although in practice, usually one
is used.

Like any supervised learning technique, a multilayer neural
network has two phases. The learning phase where the network
learns by adjusting the weights so as to be able to predict the
correct class label of the new input patterns during the test
phase.

Before the training process, one should define the number
of hidden layers (if more than one) and the number of neurons
on each layer. The number of neurons on the input layer
corresponds to the number of attributes that represent a sample.
However, input values should be numerical to perform the
backpropagation algorithm. Therefore, the discrete values are
transformed into a vector as it is explained in the following.
For each different discrete value of an attribute is assigned a
neuron on the input layer. For example, for the protocol type
(tcp, udp, icmp), there are three inputs, say I0, I1, I2 assigned
to this attribute. Each unit is initialized to 0. If the protocol
type of the current connection is tcp (resp. udp, icmp) then I0

is set to 1 (resp. I1 is set to 1 and so on). One output unit, on
the output layer, may be used to represent exactly one class.
So, if the output of a neuron on the output layer is equal to
1 then the corresponding class is designed as the predicted
class. The number of hidden layers and the number of units
on each hidden layer is established by experience during the
training phase since there are no clear rules as to set the best
number of hidden layer units.

The use of neural networks in intrusion detection is not
new because there are at least two works that were developed
during the last decades. The first model is used in Hyperview
[5] for a user behavior modeling. The second one is that
discussed in [4]. This latter was used as a misuse detection tool

where only packet header attributes are considered for analysis
to detecting denial of service and port scan attacks. While
these works used neural networks for either user anomaly
detection or misuse detection, we use them here for both
network misuse and anomaly detection particularly over the
different KDD 99 data sets [9].

B. Experimental methodology and results

Some parameters of the neural network are known a priori
from the provided problem. The number of neurons on the
input layer, in our example using the KDD 99 data sets, is
equal to 125 units because the discrete attributes among the
41 attributes are translated into continuous ones. The number
of neurons on the output layer is equal to the number of the
total classes corresponding to the five classes considered in
the KDD 99 contest (normal, probing, DoS, U2R and R2L
respectively).

Other parameters such as the number of hidden layers, the
number of neurons in the hidden layers, the momentum, the
learning rate and the number of iterations are determined by
experience.

In the following, the number of hidden layers we consider
in our neural network architecture is limited to only one
hidden layer. After performing different tests using one hidden
layer, two then three hidden layers we did not obtain a
significant improvement in comparison with using only one
hidden layer. The momentum is fixed to 0.60 after many
experiments where this parameter varied over the interval
[0.20, 0.90]. The learning rate is fixed to 0.20 after varying
it over the interval [0.10, 0.50]. However, the weights values
of the different connections in the whole network are randomly
initialized in the interval [−0.50, 0.50].

Since each neuron on the output layer corresponds to one
class, the neuron with the highest value defines the predicted
class. Using this technique, every sample will be assigned a
class among the five classes defined a priori.

Table III presents the confusion matrix related to the best
percentage of successful prediction obtained after combining
the best parameters of the neural network.

Predicted %Normal %Probing %DoS %U2R %R2L
Actual
Normal(60,593) 97.87 0.75 1.20 0.00 0.18
Probing (4,166) 10.68 71.63 15.34 0.00 2.35
DoS (229,853) 2.62 0.36 97.00 0.00 0.02
U2R (228) 86.84 7.02 3.95 0.00 2.19
R2L (16,189) 73.20 0.06 0.06 0.00 26.68

PSP = 93.10%, CPT = 0.2072

TABLE III
CONFUSION MATRIX WHEN USING THE BACKPROPAGATION TECHNIQUE

WITH THE BEST PARAMETERS.

We mention, from Table III, that the prediction ratio PSP =
93.10% and the cost per test CPT = 0.2072 outperform
all the results of the previous works done over KDD 99.
However, the U2R class is undetectable. This is because the
number of samples of the U2R class during the learning step



IF (all neurons on the output layer are less than a threshold) THEN
The corresponding connection is new
A diagnosis should be performed

ELSE
Let the kth neuron be the most activated one,
This connection corresponds to the kth class.

FI

Fig. 1. Classification process using a threshold.

is the lowest one (52 instances over 494, 021). Therefore, it is
difficult to learn this category using neural networks. Our first
goal does not consist in outperforming previous work done
over KDD 99 intrusion detection contest. However, we want
to understand why all these algorithms fail to detect the last
two attack classes, namely U2R and R2L. We also note that
the two attacks U2R and R2L are often detected as a normal
traffic (86.84% for U2R and 73.20% for R2L) in almost all
the techniques that are used for this purpose. There are many
R2L and U2R instances that are new (see Table II) in the test
data sets since their corresponding attack type is not present
in the learning data set.

In order to detect these new attacks we improve the clas-
sification process of the neural networks as the following. A
threshold θ is defined. Therefore, if the value of the highest
output neuron is below this threshold, the corresponding
connection is considered momentarily anomalous however a
diagnosis should be performed for further investigation. The
diagnosis is not a goal here. Figure 1 presents this algorithm.

Figure 2 shows the variation of the percentage of successful
versus the variation of the a priori fixed threshold θ.
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Fig. 2. PSP variation according to the considered threshold value.

The results shown in Figure 2 are performed over the same
neural network using the best parameters. We mention that
the attacks instances that are predicted as new attacks are
considered as a successful prediction ratio.

While the whole successful prediction ratio increases, the
corresponding prediction ratio of each class decreases respec-
tively. Figure 3 shows the different prediction ratios of each
class1 when varying the threshold.

According to Figure 3, even if the threshold is set to 0.90
the two classes DoS and Normal remain detectable in their
actual classes. This means that the neural network has correctly
learned these two classes. However, the probing and the R2L

1The U2R class is not presented since it is not detected even before
considering the threshold.
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Fig. 3. Different classes PSP variation according to the considered threshold
value.

classes are not predicted in their corresponding actual class
when considering the threshold equal to 0.70 for R2L and 0.90
for the Probing attack class. This means that the instances of
the test corresponding to these two classes are not well learned
or are not close to their corresponding instances in the learning
data set.
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Fig. 4. Different classes ratios detected as a new class.

We report in Figure 4 the prediction ratios of the different
classes that are detected as new ones. Figure 4 shows that
while increasing the threshold value the two attack classes
R2L and Probing are detected as new ones. This means that
they are moving from their actual class when no threshold was
considered to a new class as if they differ from their real class.
However, Figure 5 presents the different attack classes that are
detected as a normal class while increasing the value of the
threshold. It is interesting to note that the prediction ratio of



these attacks as a normal one remains respectively stable for
all of them even if the value of this threshold is equal to 0.90.
The two classes U2R and R2L are always detected as normal
with rates exceeding 76.75% for U2R and 64.4% for the R2L
class. This means that the new instances of these two classes
seemingly are close to the instances of the normal connection
present in the training set.
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Fig. 5. Ratios of the different attack classes detected as a normal class.

Although the neural network outperforms all previous works
done over KDD 99 intrusion detection data sets, it failed to de-
tect the attacks that are not present with low number presence
in the training data set particularly the U2R attack instances
that are almost not predicted in the whole experiments.

While the neural networks transform the discrete values of
the different attributes into numerical values, the decision trees
algorithm works not only with numerical attributes values but
also with discrete values. In Section IV, we investigate the
decision tree induction algorithm to test whether it is possible
to detect new attacks, especially the two classes R2L and U2R
that remain undetectable. Our goal consists in detecting the last
two classes as attacks rather than improving the percentage of
the successful prediction ratio of the whole test data. If this is
not the case, we should give the reasons why they are always
detected as normal connections.

IV. DECISION TREES

A. Background

Decision trees learners trace their origins back to the work
of Hunt and others in the late 1950s [8]. At least two seminal
works are to be mentioned, those by Quinlan [12] and by
Breiman et al. [3]. A decision tree is a tree that has three main
components: nodes, arcs, and leaves. Each node is labeled
with a feature attribute which is most informative among the
attributes not yet considered in the path from the root, each
arc out of a node is labeled with a feature value for the node’s
feature and each leaf is labeled with a category or class.

Decision trees classifiers are based on the “divide and
conquer” strategy to construct an appropriate tree from a given

learning set containing a finite and not empty set of labeled
instances.

The decision tree is constructed during the learning phase,
it is then used to predict the classes of new instances.

Most of the decision trees algorithms use a top down
strategy; i.e from the root to the leaves. Two main processes
are necessary to use the decision tree: the building process and
the classification process.

Besides the construction and classification steps, many
decision trees algorithms use another optional step. This step
consists in removing some edges that are considered useless
for improving the performance of the tree in the classification
step. Pruning trees simplifies the tree since many useless edges
are removed rendering complex trees more comprehensive for
interpretation. In addition, a tree that is already built is pruned
only when it gives better classification results than before
pruning [11].

In practice, one successful method that is used for finding
high accuracy hypotheses is based on pruning the rules issued
from the tree constructed during the learning phase. This
method is used in the C4.5rules [12] that is a companion
program to C4.5.
After the building process, each attribute test along the path
from the root to the leaf becomes a rule antecedent (precon-
dition) and the classification at the leaf node becomes the
rule consequence (postcondition). To illustrate the rule post
pruning, let us consider the following rule generated from the
tree:
IF (protocol type = icmp) ∧ (count> 87)
THEN class = smurf
This rule is pruned by removing any antecedent whose removal
does not worsen its estimated accuracy.

In addition to the advantages cited by Mitchell [11], the
pruned rules have many advantages in intrusion detection.
Since the rules have the "IF ... THEN ..." format, they
can be used as a model for a rule based intrusion detection. The
different C4.5 rules that are generated are concise and intuitive.
Therefore, they can be checked and inspected by a security
expert for further investigation. We notice that C4.5rules has
interesting properties for intrusion detection since it generates
a good generalization accuracy. New intrusions may appear
after the building process whose forms are quite similar
to known attacks that are considered a priori. Using the
generalization accuracy of the rules, new attacks variations
could then be detected using the different rules. Real time
IDSs require short rules for efficiency. Post pruning the rules
generates accurate conditions hence improves the execution
time for a real time use of decision in intrusion detection.

B. Improving the classification process

While the rules are efficient for detecting intrusions and
their variants, they remain limited to known attacks and normal
traffic. This is because the decision trees C4.5 algorithm
written by Quinlan [12] presents a drawback towards the set
of instances that are not covered by any of the rules generated
from the decision tree. He proposed a default class for those



instances. The default class is defined as that with most items
not covered by any rule. In the case of conflict, ties are
resolved in favor of the most frequent class. An example of
such a classification is illustrated in Table IV.

C4.5 rule Meaning
duration <= 2,
num failed logins> 5
− > class guess passwd

If the duration of the connection is less
or equal to 2 seconds and the number of
failed logins is greater than 5 then this
connection (telnet or rsh) is a guessing
password attack.

protocol type = icmp,
src bytes> 333
− > class smurf

If the protocol type is icmp and the length
of the packets coming from the source is
greater than 333 bytes then this connection
is a smurf attack.

...
...

Default: Normal If none of the rules matches then the cur-
rent connection corresponds to a normal
one.

TABLE IV
CLASSIFICATION USING THE POST PRUNED RULES.

Using this principle, a default class from the learning data
set is assigned to any observed instance that may be a normal
connection, known or unknown attack. This classification is
useful only if it is exclusive. Since we are interested in
detecting novel attacks this classification would not be able
to detect new attacks that normally are not covered by any
rule from the tree built during the learning step.

To overcome this problem, instances that do not have a
corresponding class in the training data set are assigned to a
default class denoted new class. Therefore, if any new instance
does not match any of the rules generated by the decision tree
then it is classified as a new class instead of assigning it to a
default class. Let us call this algorithm enhanced C4.5.

To illustrate the effectiveness of this new classification, we
conduct, in Section IV-C, our experiments on the KDD 99
database since it contains many new attacks in the test data set
that are not present in the training data set as shown in Table
II. On the other hand, we applied this technique to a real
traffic in our laboratory network. This traffic contains some
new attacks that were not available when DARPA98 was built
such as the slammer worm and the different DDoS attacks.
These experiments shown the effectiveness of our algorithm.
We do not present them here because of space limitation (for
more details, see [2], Chapter 5).

This proposal may be generalized to any problem similar
to the KDD 99 contest that seeks to find new instances in the
test data set where some classes should be detected as new
ones but not as one of the categories listed in the training data
set. The fact that new attacks are not considered is one of the
reasons that does not enable the different methods applied to
KDD 99 contest to predict any new attack.

C. Experimental Analysis of KDD 99

We first present the different experiments and results ob-
tained when using the different rules generated from the
standard C4.5 algorithm. Applying this algorithm, a default

class from the known classes in the training data set is
automatically assigned to any new instance that may not be
covered by any of the different rules. In the second step, the
enhanced C4.5 algorithm, as explained in Section IV-B is used
to handle new instances.

Table V presents the confusion matrix for the 5 classes
when using the rules from the decision trees generated by
the standard C4.5rules algorithm of Quinlan [13].

Predicted %Normal %Probing %DoS %U2R %R2L
Actual
Normal(60,593) 99.47 0.40 0.12 0.01 0.00
Probing (4,166) 18.24 72.73 2.45 0.00 6.58
DoS (229,853) 2.62 0.06 97.14 0.00 0.18
U2R (228) 82.89 4.39 0.44 7.02 5.26
R2L (16,189) 81.60 14.85 0.00 0.70 2.85

PSP = 92.30%, CPT = 0.2342

TABLE V
CONFUSION MATRIX RELATIVE USING THE RULES GENERATED BY THE

STANDARD C4.5RULES ALGORITHM.

From Table V, the two classes R2L and U2R are badly pre-
dicted. On the other hand, many probing and DoS instances are
misclassified within the normal category. Most misclassified
instances are predicted as normal. This is due to the supervised
C4.5rules algorithm that assigns a default class among known
classes as explained in Section IV-B. We note that the class
that has the highest number of uncovered instances according
to the different pruned rules in the learning data set is the
normal class corresponding to the normal traffic.

Hence, if a new instance is presented that is different
(see for instance definition 4.1 below) from all other known
normal or abnormal instances in the learning step, it is
automatically classified as the default class normal.

Definition 4.1: An instance A is different from all other
instances present in the training data set, according to the
different generated rules, if none of the rules matches this
instance.

The confusion matrix obtained when we use the enhanced
C4.5rules algorithm that considers the default class as a new
instance is presented in Table VI.

Predicted %Normal %Probing %DoS %U2R %R2L %New
Actual
Normal(60,593) 99.43 0.40 0.12 0.01 0.00 0.04
Probing (4,166) 8.19 72.73 2.45 0.00 6,58 10.06
DoS (229,853) 2.26 0.06 97.14 0.00 0.18 0.36
U2R (228) 21.93 4.39 0.44 7.02 5.26 60.96
R2L (16,189) 79.41 14.85 0.00 0.70 2.85 2.20

PSP = (92.30 + 0.57)%, CPT = 0.2228

TABLE VI
CONFUSION MATRIX WHEN USING THE GENERATED RULES FROM THE

ENHANCED C4.5 ALGORITHM.

By using the enhanced C4.5 algorithm, the detection rate of
the U2R class is increased by 60.96% (corresponding to the
httptunnel attack) which decreases the false negative rate of
this class from 82.89% (189/228) to 21, 93% (50/228). The
detection rate of the Probing class is also enhanced by 10, 06%



corresponding to 413 instances which are not classified as a
normal traffic but as a new class. We note that the different
ratios presented in Table VI are the same as those in Table
V except the normal column where the corresponding ratios
have decreased from Table V to VI. This is expected since
the normal class is the default class, whereas in the second
experiment all the instances that are classified using the default
class are classified in the new class.

We should mention that the highest ratio for the U2R class
has never exceeded 14% according to the different results
available in the literature. Using our approach, this attack class
is detected as an abnormal traffic with a detection rate of
67.98%. The false positive rate is increased by a small ratio
corresponding to 24 instances (0.04%). However, the false
negative rate of the R2L class remains stable.

We also performed two different tests to check the coher-
ence of the learning and test databases of KDD 99.

In the first case, we use the default training data set of
KDD 99 as the training data set and in the second test we
use the test data set as the training set. In each test, we
examine the percentage of successful prediction (PSP) using
the learning data set of each test as a test set. The objective
of this analysis is to help us discover whether the two data
sets (learning and test data sets) are incoherent. Therefore, the
different prediction ratios of the different data sets may help us
to find out whether the enhanced C4.5 algorithm we proposed
is inefficient or the different KDD 99 data sets present some
anomalies such as incoherence.

Definition 4.2: A database is said coherent if all the training
instances characterized by the same attributes’ values belong
to the same class. It is said incoherent if there are at least
two instances having the same attributes values but different
classes.

Table VII presents the confusion matrix obtained from
testing the enhanced C4.5 algorithm over the training data set
as a learning and a testing data set.

Predicted %Normal %Probing %DoS %U2R %R2L %New
Actual
Normal(97,278) 99.94 0.01 0.00 0.00 0.00 0.05
Probing (4,107) 0.17 99.78 0.00 0.00 0.00 0.05
DoS (391,458) 0.00 0.00 99.99 0.00 0.00 0.01
U2R (52) 1.92 1.92 0.00 90.39 0.00 5.77
R2L (1,126) 0.62 0.00 0.00 0.09 98.93 0.36

PSP = 99.99%

TABLE VII
CONFUSION MATRIX OBTAINED USING THE ENHANCED C4.5 ALGORITHM

ON THE INITIAL KDD 99 LEARNING DATABASE.

We notice that the different classes are predicted with high
rates using the learning database to construct the tree and to
generate the different rules. The successful prediction ratio is
PSP = 99.99%.

In the field of supervised machine learning techniques, a
method is said powerful if it learns and predicts the different
instances of the training set with a low detection error and
then generalizes its knowledge to predict the class of new

instances. Unfortunately, the C4.5 induction algorithm has
efficiently learned the different instances of the training set,
according to Table VII, but could not classify new instances,
for the moment, into their appropriate category according to
bad results that are reported in Table V.

We also examined in details the classification of the new
instances belonging to the R2L class presented in Table II;
namely {named, sendmail, snmpgettattack, snmpguess, worm,
xlock, xsnoop}. Table VIII presents the confusion matrix
corresponding to these new R2L attacks in the test data set.

Predicted %Normal %Pro- %DoS %U2R %R2L %New
Actual bing
named (17) 70.59 0.00 0.00 0.00 0.00 29.41
sendmail (17) 100 0.00 0.00 0.00 0.00 0.00
snmpget- 100 0.00 0.00 0.00 0.00 0.00
attack(7,741)
snmpguess (2,406) 99.88 0.04 0.00 0.00 0.00 0.08
worm (2) 100 0.00 0.00 0.00 0.00 0.00
xlock (9) 100 0.00 0.00 0.00 0.00 0.00
xsnoop (4) 50.00 0.00 0.00 25.00 25.00 0.00

PSP ' 0.00% (PSP ' 0.00%)

TABLE VIII
CONFUSION MATRIX RELATIVE TO NEW R2L ATTACKS USING THE

ENHANCED C4.5 ALGORITHM.

From Table VIII, there is only one instance of type xsnoop
that is classified properly as R2L attacks and another in the
U2R class and one instance of type snmpguess is classified
as a probing attack and these are common results of the two
algorithms standard C4.5 and enhanced C4.5. However, there
are only two instances of type snmpguess that are classified
as new attacks and five others of type named.

All the remaining instances concerning the new R2L attacks
are predicted as normal connections, i.e 10, 186 (resp. 10, 193)
using the enhanced C4.5 algorithm (resp. the standard C4.5
algorithm).

The false negative rate of the new R2L attacks present in the
test data set is about 99.10% (resp. 99.97%) for the enhanced
C4.5 algorithm (resp. the standard C4.5 algorithm).

These results show that these new R2L connections are not
distinct from the normal connections issued after transforma-
tion done by MADAM/ID.

In the second test, we invert the two databases.Using the
standard and the enhanced C4.5 algorithms, we obtained the
confusion matrix presented in Table IX.

Predicted %Normal %Probing %DoS %U2R %R2L %New
Actual
Normal(60,593) 98.34 0.02 0.03 0.01 1.50 0.11
Probing (4,166) 0.19 99.35 0.07 0.00 0.00 0.38
DoS (229,853) 0.01 0.00 99.99 0.00 0.00 0.00
U2R (228) 2.19 0,00 0.00 96.93 0.00 0.88
R2L (16,189) 36.40 0,02 0.01 0.05 63.33 0.19

PSP = 97.70%

TABLE IX
CONFUSION MATRIX RELATIVE TO FIVE CLASSES USING THE RULES

GENERATED BY THE ENHANCED C4.5 ALGORITHM OVER THE LEARNING

DATABASE OF THE SECOND TEST.



0,udp,snmp,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,
0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,udp,snmp,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,
0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal.

TABLE X
SNMPGETATTACK ATTACK AND NORMAL CONNECTION SIMILARITY.

Although the percentage of successful prediction rate, from
confusion matrix IX, is PSP = 97.70%, it is considered
very low since it consists in classifying the known labeled
instances of the learning data set. This rate is considered very
low in the machine learning domain because it could not learn
the instances whose classes are known a priori. This means
that the C4.5 algorithm failed to learn instances with their
appropriate labels. On the other hand, the R2L class is highly
misclassified. The classifier has learned only 63.33% from all
the R2L labeled instances.

Most misclassified R2L instances are predicted as normal
connections. This result justifies our observation stated in the
first test: i.e. after transformation, the new R2L attacks are not
distinct from the normal connections.

Since there are similarities between many attack connec-
tions and many normal connections, the question one has to
ask is why different attacks have the same attributes as those
of the normal connections? The corresponding tcpdump traffic
of the different attacks is similar to that of normal connections
or the transformation done over these data sets is incorrect?

All instances of snmpgetattack are predicted as normal
(within R2L class in Table VIII). Indeed, the snmpgetattack
traffic is recognized as normal because the attacker logs in
as he were a non malicious user since he has guessed the
password. Table X shows that the connections corresponding
to the snmpgetattack are the same as those of the normal
traffic. However, the snmpguess category should be recognized
as a new attack or as a dictionary attack. Unfortunately, there
is not any attribute among the 41 attributes to test the SNMP
community password in the SNMP request as it is the case
with some attributes that verify if it is a root password or a
guest password. This is considered only in the case of telnet,
rlogin, etc., services. The corresponding connections of the
snmpguess category are the same as those of the normal traf-
fic after transformation using MADAMA/ID programs [10].
Hence, some interesting information, with which we might
have distinguished the traffic, generated by the snmpguess
attack with the normal traffic is lost after transformation. We
set necessary conditions that should be satisfied by a rich
transformation function to prevent these similarities (for more
details, see [2]).

V. CONCLUSION

In this paper, we investigated two different techniques for
anomaly intrusion namely neural networks and decision trees.
These two techniques fail to detect new attacks that are
not present in the training data set. We improve them for
anomaly intrusion detection and test them over the KDD 99
data sets and over real network traffic in real time. While

the neural networks are very interesting for generalization
and very poor for new attacks attack detection, the decision
trees have proven their efficiency in both generalization and
new attacks detection. The results obtained with these two
techniques outperform the winning entry of the KDD 99 data
intrusion detection contest. Another interesting point done here
is the introduction of the new class to which new instances
should be classified for anomaly intrusion detection using
supervised machine learning techniques. Since the different
MADAM/ID programs [10] are not available and present
many shortcomings, we have written the different programs
that transform tcpdump traffic into connection records. The
objective of our contribution in this paper is twofold. It first
consists in extending the notion of anomaly intrusion detection
by considering both normal and known intrusions during
the learning step. The second is the necessity to improve
machine learning methods by adding a new class into which
novel instances should be classified since they should not be
classified as any of the known classes present in the learning
data set. As future work, we are investigating the use of this
technique with explicit or semi explicit alert correlation tools.
Since these tools do not deal with unknown attacks, we are
currently investigating their extension to handle these new
attacks generated by the new anomaly detection to integrate
them in the ongoing correlation attack scenarios.
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